Covariant map between Ramond-Neveu-Schwarz and pure spinor formalisms for the superstring

  • Nathan BerkovitsEmail author
Open Access


A covariant map between the Ramond-Neveu-Schwarz (RNS) and pure spinor formalisms for the superstring is found which transforms the RNS and pure spinor BRST operators into each other. The key ingredient is a dynamical twisting of the ten spin-half RNS fermions into five spin-one and five spin-zero fermions using bosonic pure spinors that parameterize an SO(10)/U(5) coset. The map relates massless vertex operators in the two formalisms, and gives a new description of Ramond states which does not require spin fields. An argument is proposed for relating the amplitude prescriptions in the two formalisms.


Superstrings and Heterotic Strings Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Witten, D = 10 Superstring Theory, in proceedings of Grand Unification, Philadelphia, 1983, pg. 395.Google Scholar
  2. [2]
    N. Berkovits, Quantization of the superstring with manifest U(5) superPoincaré invariance, Phys. Lett. B 457 (1999) 94 [hep-th/9902099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08 (2001) 026 [hep-th/0104247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Tonin, World sheet supersymmetric formulations of Green-Schwarz superstrings, Phys. Lett. B 266 (1991) 312 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Matone, L. Mazzucato, I. Oda, D. Sorokin and M. Tonin, The Superembedding origin of the Berkovits pure spinor covariant quantization of superstrings, Nucl. Phys. B 639 (2002) 182 [hep-th/0206104] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    N. Berkovits, Explaining the Pure Spinor Formalism for the Superstring, JHEP 01 (2008) 065 [arXiv:0712.0324] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background, Nucl. Phys. B 431 (1994) 258 [hep-th/9404162] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Baulieu, Transmutation of pure 2 − D supergravity into topological 2 − D gravity and other conformal theories, Phys. Lett. B 288 (1992) 59 [hep-th/9206019] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    L. Baulieu, M.B. Green and E. Rabinovici, A Unifying topological action for heterotic and type-II superstring theories, Phys. Lett. B 386 (1996) 91 [hep-th/9606080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    L. Baulieu, M.B. Green and E. Rabinovici, Superstrings from theories with N > 1 world sheet supersymmetry, Nucl. Phys. B 498 (1997) 119 [hep-th/9611136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    L. Baulieu and N. Ohta, World sheets with extended supersymmetry, Phys. Lett. B 391 (1997) 295 [hep-th/9609207] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    E. Witten, private communication.Google Scholar
  15. [15]
    N. Nekrasov, Pure spinors, beta-gammas, super-Yang-Mills and Chern-Simons, Part 2, in KITP 2009 Lecture,
  16. [16]
    L. Baulieu, SU(5)-invariant decomposition of ten-dimensional Yang-Mills supersymmetry, Phys. Lett. B 698 (2011) 63 [arXiv:1009.3893] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    N. Berkovits, Dynamical twisting and the b ghost in the pure spinor formalism, JHEP 06 (2013) 091 [arXiv:1305.0693] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    P.A. Grassi and S. Guttenberg, On Projections to the Pure Spinor Space, JHEP 12 (2011) 089 [arXiv:1109.2848] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Guttenberg, A Projection to the Pure Spinor Space, arXiv:1202.0335 [INSPIRE].
  20. [20]
    P.A. Grassi, G. Policastro, M. Porrati and P. Van Nieuwenhuizen, Covariant quantization of superstrings without pure spinor constraints, JHEP 10 (2002) 054 [hep-th/0112162] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P.A. Grassi, G. Policastro and P. van Nieuwenhuizen, On the BRST cohomology of superstrings with/without pure spinors, Adv. Theor. Math. Phys. 7 (2003) 499 [hep-th/0206216] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Y. Aisaka and Y. Kazama, A New first class algebra, homological perturbation and extension of pure spinor formalism for superstring, JHEP 02 (2003) 017 [hep-th/0212316] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. Aisaka and Y. Kazama, Operator mapping between RNS and extended pure spinor formalisms for superstring, JHEP 08 (2003) 047 [hep-th/0305221] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    W. Siegel, Classical Superstring Mechanics, Nucl. Phys. B 263 (1986) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. B 80 (1979) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Witten, Twistor-Like Transform in Ten-Dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Donagi and E. Witten, Supermoduli Space Is Not Projected, arXiv:1304.7798 [INSPIRE].
  28. [28]
    E. Witten, More On Superstring Perturbation Theory, arXiv:1304.2832 [INSPIRE].
  29. [29]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  30. [30]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ICTP South American Institute for Fundamental Research Instituto de Física TeóricaUNESP - Univ. Estadual PaulistaSão PauloBrasil

Personalised recommendations