Impersonating the Standard Model Higgs boson: alignment without decoupling

  • Marcela Carena
  • Ian Low
  • Nausheen R. ShahEmail author
  • Carlos E. M. Wagner
Open Access


In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A − tan β parameter space.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.Google Scholar
  12. [12]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Craig and S. Thomas, Exclusive Signals of an Extended Higgs Sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D.S.M. Alves, P.J. Fox and N.J. Weiner, Higgs Signals in a Type I 2HDM or with a Sister Higgs, arXiv:1207.5499 [INSPIRE].
  16. [16]
    G. Bélanger, U. Ellwanger, J.F. Gunion, Y. Jiang and S. Kraml, Two Higgs Bosons at the Tevatron and the LHC?, arXiv:1208.4952 [INSPIRE].
  17. [17]
    N. Craig, J.A. Evans, R. Gray, C. Kilic, M. Park, S. Somalwar and S. Thomas, Multi-Lepton Signals of Multiple Higgs Bosons, JHEP 02 (2013) 033 [arXiv:1210.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W. Altmannshofer, S. Gori and G.D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, General two Higgs doublet model (2HDM-G) and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the Heavy CP-even Higgs Boson from Current Higgs Data, Phys. Rev. D 87 (2013) 035008 [arXiv:1211.3849] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.-Y. Chen and S. Dawson, Exploring Two Higgs Doublet Models Through Higgs Production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHC - the story so far, arXiv:1304.5225 [INSPIRE].
  27. [27]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.-M. Gerard and M. Herquet, A Twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett. 98 (2007) 251802 [hep-ph/0703051] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a vectophobic Two-Higgs-Doublet-Model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Han, T. Li, S. Su and L.-T. Wang, Non-Decoupling MSSM Higgs Sector and Light Superpartners, JHEP 11 (2013) 053 [arXiv:1306.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  33. [33]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.R. Espinosa and M. Quirós, Higgs triplets in the supersymmetric standard model, Nucl. Phys. B 384 (1992) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.M. Asner et al., ILC Higgs White Paper, arXiv:1310.0763 [INSPIRE].
  37. [37]
    G. Bhattacharyya, D. Das, P.B. Pal and M.N. Rebelo, Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry, JHEP 10 (2013) 081 [arXiv:1308.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H.E. Haber and R. Hempfling, The Renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Carena, S. Heinemeyer, O. Stal, C.E.M. Wagner and G. Weiglein, MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    CDF, D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for the Standard Model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  43. [43]
    CMS collaboration, Higgs to tau tau (SM) (HCP), CMS-PAS-HIG-12-043.
  44. [44]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).
  45. [45]
    CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015.
  46. [46]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The Lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].Google Scholar
  51. [51]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M.S. Carena, H.E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wagner and G. Weiglein, Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP - even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.S. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom - top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M.S. Carena, S. Mrenna and C.E.M. Wagner, MSSM Higgs boson phenomenology at the Tevatron collider, Phys. Rev. D 60 (1999) 075010 [hep-ph/9808312] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M.S. Carena, S. Mrenna and C.E.M. Wagner, The Complementarity of LEP, the Tevatron and the CERN LHC in the search for a light MSSM Higgs boson, Phys. Rev. D 62 (2000) 055008 [hep-ph/9907422] [INSPIRE].ADSGoogle Scholar
  66. [66]
    H.E. Haber, M.J. Herrero, H.E. Logan, S. Penaranda, S. Rigolin and D. Temes, SUSY QCD corrections to the MSSM h0 bb vertex in the decoupling limit, Phys. Rev. D 63 (2001) 055004 [hep-ph/0007006] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J. Guasch, W. Hollik and S. Penaranda, Distinguishing Higgs models in Hb \( \overline{b} \) /H → τ+τ, Phys. Lett. B 515 (2001) 367 [hep-ph/0106027] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M.S. Carena, H.E. Haber, H.E. Logan and S. Mrenna, Distinguishing a MSSM Higgs boson from the SM Higgs boson at a linear collider, Phys. Rev. D 65 (2002) 055005 [Erratum ibid. D 65 (2002) 099902] [hep-ph/0106116] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Carena, P. Draper, T. Liu and C. Wagner, The 7 TeV LHC Reach for MSSM Higgs Bosons, Phys. Rev. D 84 (2011) 095010 [arXiv:1107.4354] [INSPIRE].ADSGoogle Scholar
  70. [70]
    ATLAS collaboration, Search for Neutral MSSM Higgs bosons in sqrts = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  71. [71]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    J.R. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    D.J. Miller, R. Nevzorov and P.M. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs Sector in Extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].ADSGoogle Scholar
  76. [76]
    R. Dermisek and J.F. Gunion, Many Light Higgs Bosons in the NMSSM, Phys. Rev. D 79 (2009) 055014 [arXiv:0811.3537] [INSPIRE].ADSGoogle Scholar
  77. [77]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    D.A. Vasquez, G. Bélanger, C. Boehm, J. Da Silva, P. Richardson and C. Wymant, The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    X. Lu, H. Murayama, J.T. Ruderman and K. Tobioka, A Natural Higgs Mass in Supersymmetry from Non-Decoupling Effects, arXiv:1308.0792 [INSPIRE].
  83. [83]
    Y. Nomura, D. Poland and B. Tweedie, μB-driven electroweak symmetry breaking, Phys. Lett. B 633 (2006) 573 [hep-ph/0509244] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Marcela Carena
    • 1
    • 2
    • 3
  • Ian Low
    • 4
    • 5
    • 6
  • Nausheen R. Shah
    • 7
    Email author
  • Carlos E. M. Wagner
    • 2
    • 3
    • 5
  1. 1.Particle Physics Divsion/Theory, Fermi National Accelerator LaboratoryBataviaU.S.A
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A
  3. 3.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A
  4. 4.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A
  5. 5.High Energy Physics Division, Argonne National LaboratoryArgonneU.S.A
  6. 6.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A
  7. 7.Michigan Center for Theoretical Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A

Personalised recommendations