Jet observables without jet algorithms

  • Daniele BertoliniEmail author
  • Tucker Chan
  • Jesse Thaler
Open Access


We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.




Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91-GeV and 209-GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].ADSGoogle Scholar
  6. [6]
    DELPHI collaboration, J. Abdallah et al., A Study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285 [hep-ex/0307048] [INSPIRE].ADSGoogle Scholar
  7. [7]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30-GeV to 209-GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    OPAL collaboration, G. Abbiendi et al., Measurement of event shape distributions and moments in e + e ¿ hadrons at 91-GeV - 209-GeV and a determination of α s, Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron - hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    CDF collaboration, T. Aaltonen et al., Measurement of Event Shapes in Proton-Antiproton Collisions at Center-of-Mass Energy 1.96 TeV, Phys. Rev. D 83 (2011) 112007 [arXiv:1103.5143] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, First Measurement of Hadronic Event Shapes in pp Collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 699 (2011) 48 [arXiv:1102.0068] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 72 (2012) 2211 [arXiv:1206.2135] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.D. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C 010630 (2001) P513 [hep-ph/0111434] [INSPIRE].
  24. [24]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.F. Berger et al., Snowmass 2001: Jet energy flow project, eConf C 010630 (2001) P512 [hep-ph/0202207] [INSPIRE].
  27. [27]
    L. Angelini et al., Jet analysis by deterministic annealing, Phys. Lett. B 545 (2002) 315 [hep-ph/0207032] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Angelini et al., Deterministic annealing as a jet clustering algorithm in hadronic collisions, Phys. Lett. B 601 (2004) 56 [hep-ph/0407214] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.Y. Grigoriev, E. Jankowski and F.V. Tkachov, Towards a standard jet definition, Phys. Rev. Lett. 91 (2003) 061801 [hep-ph/0301185] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.Y. Grigoriev, E. Jankowski and F.V. Tkachov, Optimal jet finder, Comput. Phys. Commun. 155 (2003) 42 [hep-ph/0301226] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Chekanov, A New jet algorithm based on the k-means clustering for the reconstruction of heavy states from jets, Eur. Phys. J. C 47 (2006) 611 [hep-ph/0512027] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.-S. Lai and B.A. Cole, Jet reconstruction in hadronic collisions by Gaussian filtering, arXiv:0806.1499 [INSPIRE].
  33. [33]
    I. Volobouev, FFTJet: A Package for Multiresolution Particle Jet Reconstruction in the Fourier Domain, arXiv:0907.0270 [INSPIRE].
  34. [34]
    S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure, Phys. Rev. Lett. 108 (2012) 182003 [arXiv:1201.1914] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Kahawala, D. Krohn and M.D. Schwartz, Jet Sampling: Improving Event Reconstruction through Multiple Interpretations, JHEP 06 (2013) 006 [arXiv:1304.2394] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    A. Hook, E. Izaguirre, M. Lisanti and J.G. Wacker, High Multiplicity Searches at the LHC Using Jet Masses, Phys. Rev. D 85 (2012) 055029 [arXiv:1202.0558] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Cohen, E. Izaguirre, M. Lisanti and H.K. Lou, Jet Substructure by Accident, JHEP 03 (2013) 161 [arXiv:1212.1456] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. El Hedri, A. Hook, M. Jankowiak and J.G. Wacker, Learning How to Count: A High Multiplicity Search for the LHC, JHEP 08 (2013) 136 [arXiv:1302.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Knuteson, M. Strovink, B. Olivier, U. Bassler, F. Fleuret, and G. Bernardi, The missing transverse energy resolution of an event, DØ Note 3629 (1999).Google Scholar
  44. [44]
    B. Nachman and C.G. Lester, Significance Variables, Phys. Rev. D 88 (2013) 075013 [arXiv:1303.7009] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y.-T. Chien, Telescoping Jets: Multiple Event Interpretations with Multiple Rs, arXiv:1304.5240 [INSPIRE].
  46. [46]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, arXiv:1401.2158 [INSPIRE].
  47. [47]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  49. [49]
    M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s} \) = 300 GeV , DESY-THESIS-2000-049 (2000).Google Scholar
  50. [50]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  53. [53]
    J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].ADSGoogle Scholar
  54. [54]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002 (2010).
  55. [55]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A

Personalised recommendations