Logarithmic AdS waves and Zwei-Dreibein gravity

  • Eric A. Bergshoeff
  • Andrés F. Goya
  • Wout Merbis
  • Jan Rosseel
Open Access
Article

Abstract

We show that the parameter space of Zwei-Dreibein Gravity (ZDG) in AdS3 exhibits critical points, where massive graviton modes coincide with pure gauge modes and new ‘logarithmic’ modes appear, similar to what happens in New Massive Gravity. The existence of critical points is shown both at the linearized level, as well as by finding AdS wave solutions of the full non-linear theory, that behave as logarithmic modes towards the AdS boundary. In order to find these solutions explicitly, we give a reformulation of ZDG in terms of a single Dreibein, that involves an infinite number of derivatives. At the critical points, ZDG can be conjectured to be dual to a logarithmic conformal field theory with zero central charges, characterized by new anomalies whose conjectured values are calculated.

Keywords

Gauge-gravity correspondence Classical Theories of Gravity Chern-Simons Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M. Blagojevic and B. Cvetkovic, Hamiltonian analysis of BHT massive gravity, JHEP 01 (2011) 082 [arXiv:1010.2596] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holographyLock, stock and barrel, Phys. Rev. D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. de Rham, G. Gabadadze, D. Pirtskhalava, A.J. Tolley and I. Yavin, Nonlinear dynamics of 3D massive gravity, JHEP 06 (2011) 028 [arXiv:1103.1351] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    O. Hohm, A. Routh, P.K. Townsend and B. Zhang, On the Hamiltonian form of 3D massive gravity, Phys. Rev. D 86 (2012) 084035 [arXiv:1208.0038] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-dreibein gravity, Phys. Rev. Lett. 111 (2013) 111102 [arXiv:1307.2774] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    A.H. Chamseddine, A. Salam and J. Strathdee, Strong gravity and supersymmetry, Nucl. Phys. B 136 (1978) 248 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Bañados, C. Deffayet and M. Pino, The Boulware-Deser mode in zwei-dreibein gravity, Phys. Rev. D 88 (2013) 124016 [arXiv:1310.3249] [INSPIRE].ADSGoogle Scholar
  16. [16]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Liu and Y.-W. Sun, Consistent boundary conditions for new massive gravity in AdS 3, JHEP 05 (2009) 039 [arXiv:0903.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Liu and Y.-W. Sun, On the generalized massive gravity in AdS 3, Phys. Rev. D 79 (2009) 126001 [arXiv:0904.0403] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Alishahiha and R. Fareghbal, D-dimensional log gravity, Phys. Rev. D 83 (2011) 084052 [arXiv:1101.5891] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, Modes of log gravity, Phys. Rev. D 83 (2011) 104038 [arXiv:1102.4091] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Porrati and M.M. Roberts, Ghosts of critical gravity, Phys. Rev. D 84 (2011) 024013 [arXiv:1104.0674] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    E. Ayon-Beato, G. Giribet and M. Hassaine, Bending AdS waves with new massive gravity, JHEP 05 (2009) 029 [arXiv:0904.0668] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Hassan, A. Schmidt-May and M. von Strauss, Higher derivative gravity and conformal gravity from bimetric and partially massless bimetric theory, arXiv:1303.6940 [INSPIRE].
  27. [27]
    C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    D. Grumiller and O. Hohm, AdS 3 /LCFT 2 : correlators in new massive gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    E.A. Bergshoeff, S. de Haan, W. Merbis, J. Rosseel and T. Zojer, On three-dimensional tricritical gravity, Phys. Rev. D 86 (2012) 064037 [arXiv:1206.3089] [INSPIRE].ADSGoogle Scholar
  31. [31]
    N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: The Initial value problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    E. Ayon-Beato and M. Hassaine, Exploring AdS waves via nonminimal coupling, Phys. Rev. D 73 (2006) 104001 [hep-th/0512074] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Isham, A. Salam and J. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    H.R. Afshar, M. Alishahiha and A. Naseh, On three dimensional bigravity, Phys. Rev. D 81 (2010) 044029 [arXiv:0910.4350] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Grumiller and I. Sachs, AdS 3 /LCF T 2 → correlators in cosmological topologically massive gravity, JHEP 03 (2010) 012 [arXiv:0910.5241] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M.R. Gaberdiel, D. Grumiller and D. Vassilevich, Graviton 1-loop partition function for 3-dimensional massive gravity, JHEP 11 (2010) 094 [arXiv:1007.5189] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    M. Bertin, D. Grumiller, D. Vassilevich and T. Zojer, Generalised massive gravity one-loop partition function and AdS/(L)CFT, JHEP 06 (2011) 111 [arXiv:1103.5468] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Andrés F. Goya
    • 1
    • 2
  • Wout Merbis
    • 1
  • Jan Rosseel
    • 3
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad UniversitariaBuenos AiresArgentina
  3. 3.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations