Advertisement

Laplace operators on Sasaki-Einstein manifolds

  • Johannes Schmude
Open Access
Article

Abstract

We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalisation of Kähler identities to the Sasaki-Einstein case.

Keywords

Differential and Algebraic Geometry AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Huybrechts, Complex geometry: an introduction, Springer, Germany (2005).Google Scholar
  2. [2]
    C. Voisin, Hodge theory and complex algebraic geometry, volume 1, Cambridge University Press, Cambridge U.K. (2008).Google Scholar
  3. [3]
    H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math. 64 (1956) 514.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965) 451.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    G. Folland and J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton U.S.A. (1972).zbMATHGoogle Scholar
  6. [6]
    S. Yau, Kohn-Rossi cohomology and its application to the complex plateau problem. I, Ann. Math. 113 (1981) 67.CrossRefzbMATHGoogle Scholar
  7. [7]
    H. Luk and S. Yau, Kohn-Rossi cohomology and its application to the complex plateau problem. II, J. Diff. Geom. 77 (2007) 135.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Du and S. Yau, Kohn-Rossi cohomology and its application to the complex plateau problem. III, J. Diff. Geom. 90 (2012) 251.zbMATHMathSciNetGoogle Scholar
  9. [9]
    A.M. Tievsky, Analogues of Kähler geometry on Sasakian manifolds, Ph.D. thesis, MIT, U.S.A. (2008).Google Scholar
  10. [10]
    J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics volume 401, Springer, Berlin, Germany (1974).Google Scholar
  12. [12]
    A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Comp. Math. 73 (1990) 57.zbMATHGoogle Scholar
  13. [13]
    A. Kehagias, New type IIB vacua and their F-theory interpretation, Phys. Lett. B 435 (1998) 337 [hep-th/9805131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    B.S. Acharya, J. Figueroa-O’Farrill, C. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  17. [17]
    D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].Google Scholar
  19. [19]
    R. Eager, J. Schmude and Y. Tachikawa, Superconformal indices, Sasaki-Einstein manifolds and cyclic homologies, arXiv:1207.0573 [INSPIRE].
  20. [20]
    R. Eager and J. Schmude, Superconformal indices and M 2-branes, arXiv:1305.3547 [INSPIRE].
  21. [21]
    A. Ceresole, G. Dall’Agata and R. D’Auria, KK spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    C. Pope, Kähler manifolds and quantum gravity, J. Phys. A 15 (1982) 2455.ADSMathSciNetGoogle Scholar
  23. [23]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    K. Pilch and I. Yoo, On perturbative instability of Pope-Warner solutions on Sasaki-Einstein manifolds, JHEP 09 (2013) 124 [arXiv:1305.0295] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversidad de OviedoOviedoSpain
  2. 2.RIKEN Nishina CenterSaitamaJapan

Personalised recommendations