Advertisement

Parton distribution benchmarking with LHC data

  • Richard D. Ball
  • Stefano Carrazza
  • Luigi Del Debbio
  • Stefano Forte
  • Jun Gao
  • Nathan Hartland
  • Joey Huston
  • Pavel Nadolsky
  • Juan RojoEmail author
  • Daniel Stump
  • Robert S. Thorne
  • C.-P. Yuan
Open Access
Article

Abstract

We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+α s uncertainty in the gluon fusion Higgs production cross section.

Keywords

QCD Phenomenology Deep Inelastic Scattering (Phenomenology) 

References

  1. [1]
    G. Watt, Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC, JHEP 09 (2011) 069 [arXiv:1106.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Watt, MSTW PDFs and impact of PDFs on cross sections at Tevatron and LHC, Nucl. Phys. Proc. Suppl. 222-224 (2012) 61 [arXiv:1201.1295] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    S. Alekhin, J. Blumlein and S. Moch, Parton Distribution Functions and Benchmark Cross Sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3, 4 and 5-flavor NNLO Parton from Deep-Inelastic-Scattering Data and at Hadron Colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Alekhin and S. Moch, Heavy-quark deep-inelastic scattering with a running mass, Phys. Lett. B 699 (2011) 345 [arXiv:1011.5790] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Nadolsky et al., Progress in CTEQ-TEA PDF Analysis, arXiv:1206.3321 [INSPIRE].
  7. [7]
    J. Gao et al., The CT10 NNLO Global Analysis of QCD, arXiv:1302.6246 [INSPIRE].
  8. [8]
    H.-L. Laiet al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
  9. [9]
    M. Guzzi, P.M. Nadolsky, H.-L. Lai and C.-P. Yuan, General-Mass Treatment for Deep Inelastic Scattering at Two-Loop Accuracy, Phys. Rev. D 86 (2012) 053005 [arXiv:1108.5112] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H1 and ZEUS collaborations, A.M. Radescu Voica, Combination and QCD Analysis of the HERA Inclusive Cross Sections, PoS(ICHEP 2010)168.
  11. [11]
    ZEUS and H1 collaborations, A. Cooper-Sarkar, PDF Fits at HERA, PoS(EPS-HEP2011)320 [arXiv:1112.2107] [INSPIRE].
  12. [12]
    H1 collaboration, F. Aaron et al., Inclusive deep inelastic scattering at high Q 2 with longitudinally polarised lepton beams at HERA, JHEP 09 (2012) 061 [arXiv:1206.7007] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    ZEUS collaboration, H. Abramowicz, Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA, arXiv:1208.6138 [INSPIRE].
  14. [14]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Thorne, A. Martin, W. Stirling and G. Watt, The Effects of combined HERA and recent Tevatron Wlν charge asymmetry data on the MSTW PDFs, PoS(DIS 2010)052 [arXiv:1006.2753] [INSPIRE].
  18. [18]
    G. Watt and R. Thorne, Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs, JHEP 08 (2012) 052 [arXiv:1205.4024] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Martin et al., Extended Parameterisations for MSTW PDFs and their effect on Lepton Charge Asymmetry from W Decays, Eur. Phys. J. C 73 (2013) 2318 [arXiv:1211.1215] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Jimenez-Delgado and E. Reya, Variable Flavor Number Parton Distributions and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of QCD, Phys. Rev. D 80 (2009) 114011 [arXiv:0909.1711] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Lionetti et al., Precision determination of α s using an unbiased global NLO parton set, Phys. Lett. B 701 (2011) 346 [arXiv:1103.2369] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.D. Ball et al., Precision NNLO determination of α s(M Z) using an unbiased global parton set, Phys. Lett. B 707 (2012) 66 [arXiv:1110.2483] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    ATLAS collaboration, Determination of the strange quark density of the proton from ATLAS measurements of the Wlν and Zll cross sections, Phys. Rev. Lett. 109 (2012) 012001 [arXiv:1203.4051] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.M. Campbell, J. Huston and W. Stirling, Hard Interactions of Quarks and Gluons: A Primer for LHC Physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].
  27. [27]
    R. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections, Phys. Rev. D 86 (2012) 074017 [arXiv:1201.6180] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.M. Cooper-Sarkar, Including heavy flavour production in PDF fits, arXiv:0709.0191 [INSPIRE].
  29. [29]
    R. Thorne, A variable-flavor number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [INSPIRE].ADSGoogle Scholar
  30. [30]
    NNPDF collaboration, R.D. Ball et al., A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
  31. [31]
    R. Thorne and G. Watt, PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism, JHEP 08 (2011) 100 [arXiv:1106.5789] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.D. Martin, R. Roberts, W.J. Stirling and R. Thorne, Scheme dependence, leading order and higher twist studies of MRST partons, Phys. Lett. B 443 (1998) 301 [hep-ph/9808371] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Martin, R. Roberts, W. Stirling and R. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors, Eur. Phys. J. C 35 (2004) 325 [hep-ph/0308087] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  36. [36]
    P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    O. Brein, R.V. Harlander and T.J. Zirke, vh@nnloHiggs Strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, arXiv:1112.5675 [INSPIRE].
  42. [42]
    P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CMS collaboration, Top pair cross section in dileptons, CMS-PAS-TOP-12-007 (2012).
  49. [49]
    CMS collaboration, First Determination of the Strong Coupling Constant from the ttbar Cross Section, CMS-PAS-TOP-12-022 (2012).
  50. [50]
    CMS collaboration, Inclusive W/Z cross section at 8 TeV, CMS-PAS-SMP-12-011 (2012).
  51. [51]
    ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. d’Enterria and J. Rojo, Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data, Nucl. Phys. B 860 (2012) 311 [arXiv:1202.1762] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    ATLAS collaboration, Measurement of the inclusive W ± and Z/γ cross sections in the electron and muon decay channels in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].ADSGoogle Scholar
  54. [54]
    CMS collaboration, Measurement of the electron charge asymmetry in inclusive W production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 111806 [arXiv:1206.2598] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    LHCb collaboration, Inclusive W and Z production in the forward region at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].Google Scholar
  56. [56]
    CDF collaboration, A. Abulencia et al., Measurement of the Inclusive Jet Cross Section using the k T algorithm in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV with the CDF II Detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].
  57. [57]
    D0 collaboration, V. Abazov et al., Measurement of the inclusive jet cross-section in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \)-TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].ADSGoogle Scholar
  59. [59]
    ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=2.76 \) TeV and comparison to the inclusive jet cross section at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2012-128 (2012).
  60. [60]
    M.L. Mangano and J. Rojo, Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, hep-ph/0609285 [INSPIRE].
  65. [65]
    J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders, Comput. Phys. Commun. 184 (2013) 1626 [arXiv:1207.0513] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    NNPDF collaboration, R.D. Ball et al., Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. B 854 (2012) 926-927] [arXiv:1012.0836] [INSPIRE].
  67. [67]
    NNPDF collaboration, R.D. Ball et al., Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data, Nucl. Phys. B 855 (2012) 608 [arXiv:1108.1758] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Gao and P. Nadolsky, PDF dependence of benchmark cross sections at the LHC, in preparation.Google Scholar
  69. [69]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order alpha-S 3 in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  72. [72]
  73. [73]
    fastNLO collaboration, M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz and F. Stober, Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes, arXiv:1109.1310 [INSPIRE].
  74. [74]
    N. Kidonakis and J. Owens, Effects of higher order threshold corrections in high E(T) jet production, Phys. Rev. D 63 (2001) 054019 [hep-ph/0007268] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Hoeche and M. Schonherr, Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production, Phys. Rev. D 86 (2012) 094042 [arXiv:1208.2815] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095 [arXiv:1210.0438] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Moretti, M. Nolten and D. Ross, Weak corrections and high E(T) jets at Tevatron, Phys. Rev. D 74 (2006) 097301 [hep-ph/0503152] [INSPIRE].ADSGoogle Scholar
  79. [79]
    NNPDF collaboration, R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Botjeet al., The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538 [INSPIRE].
  82. [82]
    D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 718 (2012) 117 [arXiv:1206.4133] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [INSPIRE].ADSGoogle Scholar
  84. [84]
    H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].ADSGoogle Scholar
  85. [85]
    NNPDF collaboration, R.D. Ball et al., Fitting parton distribution data with multiplicative normalization uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Richard D. Ball
    • 1
  • Stefano Carrazza
    • 2
    • 3
  • Luigi Del Debbio
    • 1
  • Stefano Forte
    • 2
    • 3
  • Jun Gao
    • 4
  • Nathan Hartland
    • 1
  • Joey Huston
    • 5
  • Pavel Nadolsky
    • 4
  • Juan Rojo
    • 6
    Email author
  • Daniel Stump
    • 5
  • Robert S. Thorne
    • 7
  • C.-P. Yuan
    • 5
  1. 1.Tait InstituteUniversity of EdinburghEdinburghScotland
  2. 2.Dipartimento di FisicaUniversità di MilanoMilanoItaly
  3. 3.INFN, Sezione di MilanoMilanoItaly
  4. 4.Department of PhysicsSouthern Methodist UniversityDallasU.S.A.
  5. 5.Department of Physics & AstronomyMichigan State UniversityEast LansingU.S.A.
  6. 6.PH Department, TH Unit, CERNGeneva 23Switzerland
  7. 7.Department of Physics and AstronomyUniversity College LondonLondonU.K.

Personalised recommendations