Quivers as calculators: counting, correlators and Riemann surfaces

Article

Abstract

The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters. These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N. The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.

Keywords

AdS-CFT Correspondence Discrete and Finite Symmetries 1/N Expansion 

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  5. [5]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory,Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].
  12. [12]
    W. Fulton and J. Harris, Representation theory: a first course, Springer (1991).Google Scholar
  13. [13]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus Non-Extremal Correlators with Giant Gravitons, JHEP 08 (2012) 143 [arXiv:1204.4172] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Lin, Giant gravitons and correlators, JHEP 12 (2012) 011 [arXiv:1209.6624] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Sadri and M. Sheikh-Jabbari, Giant hedgehogs: spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 [hep-th/0312155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: an Example from giant gravitons, Phys. Rev. Lett. 95 (2005) 191601 [hep-th/0502172] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A Study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons - with Strings Attached (III), JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  25. [25]
    I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills from giant gravitons, JHEP 12 (2007) 006 [hep-th/0606087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Bianchi, F. Dolan, P. Heslop and H. Osborn, N = 4 superconformal characters and partition functions, Nucl. Phys. B 767 (2007) 163 [hep-th/0609179] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A.V. Ryzhov, Quarter BPS operators in N = 4 SYM, JHEP 11 (2001) 046 [hep-th/0109064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    E. D’Hoker, P. Heslop, P. Howe and A. Ryzhov, Systematics of quarter BPS operators in N = 4 SYM, JHEP 04 (2003) 038 [hep-th/0301104] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    Y. Kimura, S. Ramgoolam and D. Turton, Free particles from Brauer algebras in complex matrix models, JHEP 05 (2010) 052 [arXiv:0911.4408] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Kimura, Correlation functions and representation bases in free N = 4 Super Yang-Mills, Nucl. Phys. B 865 (2012) 568 [arXiv:1206.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Kimura and H. Lin, Young diagrams, Brauer algebras and bubbling geometries, JHEP 01 (2012) 121 [arXiv:1109.2585] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Brown, Complex matrix model duality, Phys. Rev. D 83 (2011) 085002 [arXiv:1009.0674] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. de Mello Koch and S. Ramgoolam, From Matrix Models and Quantum Fields to Hurwitz Space and the absolute Galois Group, arXiv:1002.1634 [INSPIRE].
  44. [44]
    R. Gopakumar, What is the Simplest Gauge-String Duality?, arXiv:1104.2386 [INSPIRE].
  45. [45]
    R. Gopakumar and R. Pius, Correlators in the Simplest Gauge-String Duality, JHEP 03 (2013) 175 [arXiv:1212.1236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    S. Kachru and E. Silverstein, 4 − D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  47. [47]
    S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    T.K. Dey, Exact Large R-charge Correlators in ABJM Theory, JHEP 08 (2011) 066 [arXiv:1105.0218] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. de Mello Koch, B.A.E. Mohammed, J. Murugan and A. Prinsloo, Beyond the Planar Limit in ABJM, JHEP 05 (2012) 037 [arXiv:1202.4925] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    B.A.E. Mohammed, Nonplanar Integrability and Parity in ABJ Theory, arXiv:1207.6948 [INSPIRE].
  54. [54]
    P. Caputa and B.A.E. Mohammed, From Schurs to Giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    A. Bissi, C. Kristjansen, A. Martirosyan and M. Orselli, On Three-point Functions in the AdS 4 /CFT 3 Correspondence, JHEP 01 (2013) 137 [arXiv:1211.1359] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    R. Dijkgraaf and C. Vafa, A Perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  58. [58]
    B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn - deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, arXiv:1207.3577 [INSPIRE].
  61. [61]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Collins, Restricted Schur Polynomials and Finite N Counting, Phys. Rev. D 79 (2009) 026002 [arXiv:0810.4217] [INSPIRE].ADSGoogle Scholar
  63. [63]
    F. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  67. [67]
    A. D’Adda and P. Provero, Two-dimensional gauge theories of the symmetric group S(n) in the large-N limit, Commun. Math. Phys. 245 (2004) 1 [hep-th/0110243] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  68. [68]
    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2 − D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  69. [69]
    M. Fukuma, S. Hosono and H. Kawai, Lattice topological field theory in two-dimensions, Commun. Math. Phys. 161 (1994) 157 [hep-th/9212154] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  70. [70]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  71. [71]
    R. de Mello Koch and S. Ramgoolam, Strings from Feynman Graph counting: without large-N, Phys. Rev. D 85 (2012) 026007 [arXiv:1110.4858] [INSPIRE].ADSGoogle Scholar
  72. [72]
    V. Turaev, Homotopy field theory in dimension two and group algebras, math/9910010 [INSPIRE].
  73. [73]
    G.W. Moore and G. Segal, D-branes and k-theory in 2D topological field theory, hep-th/0609042 [INSPIRE].
  74. [74]
    P. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge University Press, Cambridge, U.K. (1994).MATHGoogle Scholar
  75. [75]
    S. Cordes, G.W. Moore and S. Ramgoolam, Large-N 2 − D Yang-Mills theory and topological string theory, Commun. Math. Phys. 185 (1997) 543 [hep-th/9402107] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  76. [76]
    S. Ramgoolam, Wilson loops in 2 − D Yang-Mills: Euler characters and loop equations, Int. J. Mod. Phys. A 11 (1996) 3885 [hep-th/9412110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    A. Recknagel, Permutation branes, JHEP 04 (2003) 041 [hep-th/0208119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    M. Atiyah, Topological quantum field theories, Publications mathématiques de lI.H. É.S. 68 (1989) 175.Google Scholar
  79. [79]
    T. Barmeier and C. Schweigert, A Geometric Construction for Permutation Equivariant Categories from Modular Functors, arXiv:1004.1825.
  80. [80]
    A. Davydov, L. Kong and I. Runkel, Field theories with defects and the centre functor, arXiv:1107.0495 [INSPIRE].
  81. [81]
    A. Mironov, A. Morozov and S. Natanzon, A Hurwitz theory avatar of open-closed strings, The European Physical Journal C 73 (2013) 2324 [arXiv:1208.5057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [INSPIRE].MathSciNetADSGoogle Scholar
  84. [84]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  85. [85]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  86. [86]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    C.E. Beasley, BPS branes from baryons, JHEP 11 (2002) 015 [hep-th/0207125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    A. Butti, D. Forcella and A. Zaffaroni, Counting BPS baryonic operators in CFTs with Sasaki-Einstein duals, JHEP 06 (2007) 069 [hep-th/0611229] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    D. Forcella, A. Hanany and A. Zaffaroni, Baryonic Generating Functions, JHEP 12 (2007) 022 [hep-th/0701236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    D. Giovannoni, J. Murugan and A. Prinsloo, The Giant graviton on AdS 4 xCP 3 - another step towards the emergence of geometry, JHEP 12 (2011) 003 [arXiv:1108.3084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    A. Hamilton, J. Murugan and A. Prinsloo, Lessons from giant gravitons on AdS 5 × T 1,1, JHEP 06 (2010) 017 [arXiv:1001.2306] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    A. Hamilton, J. Murugan, A. Prinsloo and M. Strydom, A Note on dual giant gravitons in AdS 4 × CP 3, JHEP 04 (2009) 132 [arXiv:0901.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    J. Bhattacharya and S. Minwalla, Superconformal Indices for N = 6 Chern Simons Theories, JHEP 01 (2009) 014 [arXiv:0806.3251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  96. [96]
    Y. Chen and N. Mekareeya, The Hilbert series of U/SU SQCD and Toeplitz Determinants, Nucl. Phys. B 850 (2011) 553 [arXiv:1104.2045] [INSPIRE].MathSciNetADSGoogle Scholar
  97. [97]
    A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical Gauge Groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    N. Jokela, M. Jarvinen and E. Keski-Vakkuri, New results for the SQCD Hilbert series, JHEP 03 (2012) 048 [arXiv:1112.5454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    M.J. Strassler, The Duality cascade, hep-th/0505153 [INSPIRE].
  101. [101]
    F. Cachazo, N. Seiberg and E. Witten, Chiral rings and phases of supersymmetric gauge theories, JHEP 04 (2003) 018 [hep-th/0303207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  104. [104]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets: pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  105. [105]
    P. Caputa, R. de Mello Koch and P. Diaz, A basis for large operators in N = 4 SYM with orthogonal gauge group, JHEP 03 (2013) 041 [arXiv:1301.1560] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  108. [108]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  109. [109]
    I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS Solutions and pure-Higgs States, JHEP 11 (2012) 171 [arXiv:1205.5023] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  111. [111]
    M. Hamermesh, Group theory and its application to physical problems. Dover publications, 1989Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.School of Physics and AstronomyQueen Mary, University of LondonLondonU.K.

Personalised recommendations