Quark and gluon jet substructure

  • Jason Gallicchio
  • Matthew D. SchwartzEmail author


Distinguishing quark-initiated jets from gluon-initiated jets has the potential to significantly improve the reach of many beyond-the-standard model searches at the Large Hadron Collider and to provide additional tests of QCD. To explore whether quark and gluon jets could possibly be distinguished on an event-by-event basis, we perform a comprehensive simulation-based study. We explore a variety of motivated and unmotivated variables with a semi-automated multivariate approach. General conclusions are that at 50% quark jet acceptance efficiency, around 80%-90% of gluon jets can be rejected. Some benefit is gained by combining variables. Different event generators are compared, as are the effects of using only charged tracks to avoid pileup. Additional information, including interactive distributions of most variables and their cut efficiencies, can be found at


QCD Phenomenology Jets 


  1. [1]
    C.T. Hill and S.J. Parke, Top production: sensitivity to new physics, Phys. Rev. D 49 (1994) 4454 [hep-ph/9312324] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Buried Higgs, Phys. Rev. D 80 (2009) 075008 [arXiv:0906.3026] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Gallicchio and M.D. Schwartz, Pure Samples of Quark and Gluon Jets at the LHC, JHEP 10 (2011) 103 [arXiv:1104.1175] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Dissertori, I.K. Knowles and M. Schmelling, Quantum Chromodynamics: High energy experiments and theory, International Series of Monographs on Physics 115, Oxford University Press (2003), reprinted in 2005 [ISBN 0198505728].Google Scholar
  5. [5]
    A. Capella, I. Dremin, J. Gary, V. Nechitailo and J. Tran Thanh Van, Evolution of average multiplicities of quark and gluon jets, Phys. Rev. D 61 (2000) 074009 [hep-ph/9910226] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Bolzoni, B. Kniehl and A. Kotikov, Gluon and quark jet multiplicities at NNNLO+NNLL, Phys. Rev. Lett. 109 (2012) 242002 [arXiv:1209.5914] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    OPAL collaboration, K. Ackerstaff et al., Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions, Eur. Phys. J. C 1 (1998) 479 [hep-ex/9708029] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ALEPH collaboration, R. Barate et al., Measurements of the structure of quark and gluon jets in hadronic Z decays, Eur. Phys. J. C 17 (2000) 1 [INSPIRE].ADSGoogle Scholar
  9. [9]
    DELPHI collaboration, P. Abreu et al., Investigation of the splitting of quark and gluon jets, Eur. Phys. J. C 4 (1998) 1 [INSPIRE].ADSGoogle Scholar
  10. [10]
    DELPHI collaboration, P. Abreu et al., Measurement of correlations between pions from different Ws in e + e W + W events, Phys. Lett. B 401 (1997) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    DELPHI collaboration, P. Abreu et al., Identified charged particles in quark and gluon jets, Eur. Phys. J. C 17 (2000) 207 [hep-ex/0106063] [INSPIRE].ADSGoogle Scholar
  12. [12]
    OPAL collaboration, K. Ackerstaff et al., Production of \( K_{\mathrm{S}}^0 \) and Λ in quark and gluon jets from Z0 decay, Eur. Phys. J. C 8 (1999) 241 [hep-ex/9805025] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    OPAL collaboration, G. Abbiendi et al., Multiplicities of π 0 , η, K 0 and of charged particles in quark and gluon jets, Eur. Phys. J. C 17 (2000) 373 [hep-ex/0007017] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ALEPH collaboration, D. Buskulic et al., Quark and gluon jet properties in symmetric three jet events, Phys. Lett. B 384 (1996) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    OPAL collaboration, G. Alexander et al., A Comparison of b and uds quark jets to gluon jets, Z. Phys. C 69 (1996) 543, given at 9th Annual Divisional Meeting (DPF 96) of the Division of Particles and Fields of the American Physical Society, Minneapolis, MN, U.S.A., 11-15 Aug 1996 [INSPIRE].
  16. [16]
    D0 collaboration, B. Abbott et al., Measurement of the top quark pair production cross-section in the all jets decay channel, Phys. Rev. Lett. 83 (1999) 1908 [hep-ex/9901023] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    CDF collaboration, T. Aaltonen et al., Measurement of the Top Quark Mass and \( p\overline{p}\to t\overline{t} \) Cross section in the All-Hadronic Mode with the CDFII Detector, Phys. Rev. D 81 (2010) 052011 [arXiv:1002.0365] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Hoeche, F. Krauss, N. Lavesson, L. Lönnblad, M. Mangano, A. Schalicke and S. Schumann, Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  20. [20]
    A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Hoecker et al., TMVA Toolkit for Multivariate Data Analysis with ROOT,
  26. [26]
    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81, in proceedings of AIHENP96 Workshop, Lausanne, Switzerland, 2-6 September 1996, [INSPIRE].
  27. [27]
    ATLAS collaboration, E. Feng, Observation of Energetic Jet Production in pp Collisions at \( \sqrt{s}=7 \) TeV using the ATLAS Experiment at the LHC, arXiv:1010.1974 [INSPIRE].
  28. [28]
    ATLAS collaboration, G. Aad et al., Jet energy measurement with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    ATLAS collaboration, Measurement of Jet Mass and Substructure for Inclusive Jets in \( \sqrt{s}=7 \) TeV pp Collisions with the ATLAS Experiment, ATLAS-CONF-2011-073 (2011).
  30. [30]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of Jet Mass at Hadron Colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  32. [32]
    CDF collaboration, D. Acosta et al., Study of jet shapes in inclusive jet production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 71 (2005) 112002 [hep-ex/0505013] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Kurt, Jet shapes at CMS, PoS(2008LHC)102.
  34. [34]
    P. Kurt, Jet Shapes, CERN-CMS-CR-2009-005 (2008).
  35. [35]
    J. Ellis and N.E. Mavromatos, On the Interpretation of Gravitational Corrections to Gauge Couplings, Phys. Lett. B 711 (2012) 139 [arXiv:1012.4353] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    CMS collaboration, V. Gavrilov, O. Kodolova and N. Lychkovskaya, Jet transverse structure as a test of hadronization models, J. Phys. G 37 (2010) 075009 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D0 collaboration, Search for the standard model Higgs boson in the ZH → bbνν channel in 6.4 f b−1 of \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV (preliminary Results for Summer 2010 Conferences), (August 2010).
  43. [43]
    J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Y. Cui, Z. Han and M.D. Schwartz, W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].ADSGoogle Scholar
  45. [45]
    ATLAS collaboration, Light-quark and Gluon Jets: Calorimeter Response, Jet Energy Scale Systematics and Properties, ATLAS-CONF-2012-138 (2012).

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaDavisU.S.A.
  2. 2.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations