Conformal symmetry for black holes in four dimensions and irrelevant deformations

  • Marco Baggio
  • Jan de Boer
  • Juan I. Jottar
  • Daniel R. Mayerson


It has been argued several times in the past that the structure of the entropy formula for general non-extremal asymptotically flat black holes in four dimensions can be understood in terms of an underlying conformal symmetry. A recent implementation of this idea, carried out by Cvetič and Larsen, involves the replacement of a conformal factor in the original geometry by an alternative conformal factor in such a way that the near-horizon behavior and thermodynamic properties of the black hole remain unchanged, while only the asymptotics or “environment” of the geometry are modified. The solution thus obtained, dubbed “subtracted geometry”, uplifts to an asymptotically AdS3 × S 2 black hole in five dimensions, and an AdS/CFT interpretation is then possible. Building on this intuition we show that, at least in the static case, the replacement of the conformal factor can be implemented dynamically by means of an interpolating flow which we construct explicitly. Furthermore, we show that this flow can be understood as the effect of irrelevant perturbations from the point of view of the dual two-dimensional CFT, and we identify the quantum numbers of the operators responsible for the flow. This allows us to address quantitatively the validity of CFT computations for these asymptotically flat black holes and provides a framework to systematically compute corrections to the CFT results.


Gauge-gravity correspondence Black Holes in String Theory AdS-CFT Correspondence 


  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].Google Scholar
  8. [8]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    M. Cvetič and F. Larsen, Greybody Factors and Charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    M. Cvetič and D. Youm, All the static spherically symmetric black holes of heterotic string on a six torus, Nucl. Phys. B 472 (1996) 249 [hep-th/9512127] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Larsen, A String model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Cvetič and F. Larsen, Conformal Symmetry for General Black Holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Cvetič and F. Larsen, Conformal Symmetry for Black Holes in Four Dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Cvetič and G. Gibbons, Conformal Symmetry of a Black Hole as a Scaling Limit: A Black Hole in an Asymptotically Conical Box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Cvetič and D. Youm, BPS saturated and nonextreme states in Abelian Kaluza-Klein theory and effective N = 4 supersymmetric string vacua, hep-th/9508058 [INSPIRE].
  18. [18]
    M. Cvetič and D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D 53 (1996) 584 [hep-th/9507090] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147].ADSGoogle Scholar
  20. [20]
    E. Cremmer et al., Vector Multiplets Coupled to N = 2 Supergravity: SuperHiggs Effect, Flat Potentials and Geometric Structure, Nucl. Phys. B 250 (1985) 385 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    A. Virmani, Subtracted Geometry From Harrison Transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Galli, T. Ort´ın, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Ortín and C. Shahbazi, A Note on the hidden conformal structure of non-extremal black holes, Phys. Lett. B 716 (2012) 231 [arXiv:1204.5910] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207.MathSciNetADSCrossRefMATHGoogle Scholar
  30. [30]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Marco Baggio
    • 1
  • Jan de Boer
    • 1
  • Juan I. Jottar
    • 1
  • Daniel R. Mayerson
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations