Inspecting the Higgs for new weakly interacting particles

  • Clifford Cheung
  • Samuel D. McDermottEmail author
  • Kathryn M. Zurek


We explore new physics scenarios which are optimally probed through precision Higgs measurements rather than direct collider searches. Such theories consist of additional electroweak charged or singlet states which couple directly to or mix with the Higgs boson; particles of this kind may be weakly constrained by direct limits due to their meager production rates and soft decay products. We present a simplified framework which characterizes the effects of these states on Higgs physics by way of tree level mixing (with neutral scalars) and loop level modifications (from electrically charged states), all expressed in terms of three mixing angles and three loop parameters, respectively. The theory parameters are constrained and in some cases even fixed by ratios of Higgs production and decay rates. Our setup is simpler than a general effective operator analysis, in that we discard parameters irrelevant to Higgs observables while retaining complex correlations among measurements that arise due to the underlying mixing and radiative effects. We show that certain correlated observations are forbidden, e.g. a depleted ratio of Higgs production from gluon fusion versus vector boson fusion together with a depleted ratio of Higgs decays to \( b\overline{b} \) versus WW. Moreover, we study the strong correlation between the Higgs decay rate to γγ and WW and how it can be violated in the presence of additional electrically charged particles. Our formalism maps straightforwardly onto a variety of new physics models, such as the NMSSM. We show, for example, that with a Higgsino of mass \( {m_{{\chi_1^{\pm }}}}\gtrsim 100 \) GeV and a singlet-Higgs coupling of λ = 0.7, the photon signal strength can deviate from the vector signal strength by up to ∼ 40 − 60% while depleting the vector signal strength by only 5 − 15% relative to the Standard Model.


Phenomenological Models Supersymmetry Phenomenology 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  4. [4]
  5. [5]
    ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).
  6. [6]
    CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).
  7. [7]
    ATLAS collaboration, Update of the HWW (∗)eνμν analysis with 13 fb−1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector, ATLAS-CONF-2012-158, CERN, Geneva Switzerland (2012).
  8. [8]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042, CERN, Geneva Switzerland (2012).
  9. [9]
    CMS collaboration, Search for the Standard Model Higgs boson in the HWWℓνjj decay channel in pp collisions at the LHC, CMS-PAS-HIG-12-046, CERN, Geneva Switzerland (2012).
  10. [10]
    ATLAS collaboration, Study of the channel HZ Z + \( q\overline{q} \) in the mass range 120-180 GeV with the ATLAS detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-163, CERN, Geneva Switzerland (2012).
  11. [11]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-169, CERN, Geneva Switzerland (2012).
  12. [12]
    CMS collaboration, Updated results on the new boson discovered in the search for the Standard Model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041, CERN, Geneva Switzerland (2012).
  13. [13]
    ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161, CERN, Geneva Switzerland (2012).
  14. [14]
    CMS collaboration, Search for the Standard Model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044, CERN, Geneva Switzerland (2012).
  15. [15]
    ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168, CERN, Geneva Switzerland (2012).
  16. [16]
    CMS collaboration, Evidence for a new state decaying into two photons in the search for the Standard Model Higgs boson in pp collisions, CMS-PAS-HIG-12-015, CERN, Geneva Switzerland (2012).
  17. [17]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Barger, M. Ishida and W.-Y. Keung, Flavor-tuned 125 GeV SUSY Higgs boson at the LHC: MSSM and NATURAL SUSY TESTS, Phys. Rev. D 87 (2013) 015003 [arXiv:1207.0779] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.T. D’Agnolo, E. Kuflik and M. Zanetti, Fitting the Higgs to natural SUSY, JHEP 03 (2013) 043 [arXiv:1212.1165] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb−1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Akeroyd and S. Moretti, Enhancement of Hγγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar
  37. [37]
    B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Haba, K. Kaneta, Y. Mimura and R. Takahashi, Enhancement of Higgs to diphoton decay width in non-perturbative Higgs model, Phys. Lett. B 718 (2013) 1441 [arXiv:1207.5102] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does Hγγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].
  51. [51]
    T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    H. Davoudiasl, I. Lewis and E. Ponton, Electroweak phase transition, Higgs diphoton rate and new heavy fermions, arXiv:1211.3449 [INSPIRE].
  58. [58]
    B. Batell, S. Jung and H.M. Lee, Singlet assisted vacuum stability and the Higgs to diphoton rate, JHEP 01 (2013) 135 [arXiv:1211.2449] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K. Schmidt-Hoberg and F. Staub, Enhanced hγγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].
  64. [64]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  66. [66]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
  67. [67]
    C. Cheung and Y. Nomura, Higgs descendants, Phys. Rev. D 86 (2012) 015004 [arXiv:1112.3043] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  69. [69]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (update), ATL-PHYS-PUB-2012-004, CERN, Geneva Switzerland (2012).
  70. [70]
    C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    K. Agashe, Y. Cui and R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    LEP SUSY working group webpage,
  73. [73]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Clifford Cheung
    • 1
  • Samuel D. McDermott
    • 2
    Email author
  • Kathryn M. Zurek
    • 2
  1. 1.Physics DepartmentCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations