# Inspecting the Higgs for new weakly interacting particles

- 72 Downloads
- 18 Citations

## Abstract

We explore new physics scenarios which are optimally probed through precision Higgs measurements rather than direct collider searches. Such theories consist of additional electroweak charged or singlet states which couple directly to or mix with the Higgs boson; particles of this kind may be weakly constrained by direct limits due to their meager production rates and soft decay products. We present a simplified framework which characterizes the effects of these states on Higgs physics by way of tree level mixing (with neutral scalars) and loop level modifications (from electrically charged states), all expressed in terms of three mixing angles and three loop parameters, respectively. The theory parameters are constrained and in some cases even fixed by ratios of Higgs production and decay rates. Our setup is simpler than a general effective operator analysis, in that we discard parameters irrelevant to Higgs observables while retaining complex correlations among measurements that arise due to the underlying mixing and radiative effects. We show that certain correlated observations are forbidden, e.g. a depleted ratio of Higgs production from gluon fusion versus vector boson fusion together with a depleted ratio of Higgs decays to \( b\overline{b} \) versus *WW*. Moreover, we study the strong correlation between the Higgs decay rate to *γγ* and *WW* and how it can be violated in the presence of additional electrically charged particles. Our formalism maps straightforwardly onto a variety of new physics models, such as the NMSSM. We show, for example, that with a Higgsino of mass \( {m_{{\chi_1^{\pm }}}}\gtrsim 100 \) GeV and a singlet-Higgs coupling of λ = 0.7, the photon signal strength can deviate from the vector signal strength by up to ∼ 40 − 60% while depleting the vector signal strength by only 5 − 15% relative to the Standard Model.

## Keywords

Phenomenological Models Supersymmetry Phenomenology## References

- [1]ATLAS collaboration,
*Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*,*Phys. Lett.***B 716**(2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar - [2]
*ATLAS Higgs public results webpage*, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults. - [3]CMS collaboration,
*Observation of a new boson at a mass of*125*GeV with the CMS experiment at the LHC*,*Phys. Lett.***B 716**(2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar - [4]
*CMS Higgs physics results webpage*, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG. - [5]ATLAS collaboration,
*An update of combined measurements of the new Higgs-like boson with high mass resolution channels*, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012). - [6]CMS collaboration,
*Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near*125*GeV*, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012). - [7]ATLAS collaboration,
*Update of the H*→*WW*^{(∗)}→*eνμν analysis with*13 fb^{−1}*of*\( \sqrt{s}=8 \)*TeV data collected with the ATLAS detector*, ATLAS-CONF-2012-158, CERN, Geneva Switzerland (2012). - [8]CMS collaboration,
*Evidence for a particle decaying to W*^{+}*W*^{−}*in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC*, CMS-PAS-HIG-12-042, CERN, Geneva Switzerland (2012). - [9]CMS collaboration,
*Search for the Standard Model Higgs boson in the H*→*WW*→*ℓνjj decay channel in pp collisions at the LHC*, CMS-PAS-HIG-12-046, CERN, Geneva Switzerland (2012). - [10]ATLAS collaboration,
*Study of the channel H*→*Z*^{∗}*Z*→*ℓ*^{+}*ℓ*^{−}\( q\overline{q} \)*in the mass range*120*-*180*GeV with the ATLAS detector at*\( \sqrt{s}=7 \)*TeV*, ATLAS-CONF-2012-163, CERN, Geneva Switzerland (2012). - [11]ATLAS collaboration,
*Observation of an excess of events in the search for the Standard Model Higgs boson in the H*→*ZZ*^{∗}→ 4*ℓ channel with the ATLAS detector*, ATLAS-CONF-2012-169, CERN, Geneva Switzerland (2012). - [12]CMS collaboration,
*Updated results on the new boson discovered in the search for the Standard Model Higgs boson in the ZZ*→ 4*leptons channel in pp collisions at*\( \sqrt{s}=7 \)*and*8*TeV*, CMS-PAS-HIG-12-041, CERN, Geneva Switzerland (2012). - [13]ATLAS collaboration,
*Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector*, ATLAS-CONF-2012-161, CERN, Geneva Switzerland (2012). - [14]CMS collaboration,
*Search for the Standard Model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP*2012, CMS-PAS-HIG-12-044, CERN, Geneva Switzerland (2012). - [15]ATLAS collaboration,
*Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC*, ATLAS-CONF-2012-168, CERN, Geneva Switzerland (2012). - [16]CMS collaboration,
*Evidence for a new state decaying into two photons in the search for the Standard Model Higgs boson in pp collisions*, CMS-PAS-HIG-12-015, CERN, Geneva Switzerland (2012). - [17]L.J. Hall, D. Pinner and J.T. Ruderman,
*A natural SUSY Higgs near*126*GeV*,*JHEP***04**(2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar - [18]D. Carmi, A. Falkowski, E. Kuflik and T. Volansky,
*Interpreting LHC Higgs results from natural new physics perspective*,*JHEP***07**(2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar - [19]K. Blum, R.T. D’Agnolo and J. Fan,
*Natural SUSY predicts: Higgs couplings*,*JHEP***01**(2013) 057 [arXiv:1206.5303] [INSPIRE].ADSCrossRefGoogle Scholar - [20]V. Barger, M. Ishida and W.-Y. Keung,
*Flavor-tuned*125*GeV SUSY Higgs boson at the LHC: MSSM and NATURAL SUSY TESTS*,*Phys. Rev.***D 87**(2013) 015003 [arXiv:1207.0779] [INSPIRE].ADSGoogle Scholar - [21]M. Montull and F. Riva,
*Higgs discovery: the beginning or the end of natural EWSB?*,*JHEP***11**(2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar - [22]N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1
*for naturalness at the LHC?*,*JHEP***01**(2013) 149 [arXiv:1207.4482] [INSPIRE].ADSCrossRefGoogle Scholar - [23]J.R. Espinosa, C. Grojean, V. Sanz and M. Trott,
*NSUSY fits*,*JHEP***12**(2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar - [24]R.T. D’Agnolo, E. Kuflik and M. Zanetti,
*Fitting the Higgs to natural SUSY*,*JHEP***03**(2013) 043 [arXiv:1212.1165] [INSPIRE].CrossRefGoogle Scholar - [25]B. Batell, S. Gori and L.-T. Wang,
*Exploring the Higgs portal with*10 fb^{−1}*at the LHC*,*JHEP***06**(2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar - [26]K. Blum and R.T. D’Agnolo, 2
*Higgs or not*2*Higgs*,*Phys. Lett.***B 714**(2012) 66 [arXiv:1202.2364] [INSPIRE].ADSCrossRefGoogle Scholar - [27]A. Azatov, R. Contino and J. Galloway,
*Model-independent bounds on a light Higgs*,*JHEP***04**(2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar - [28]J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu,
*A SM-like Higgs near*125*GeV in low energy SUSY: a comparative study for MSSM and NMSSM*,*JHEP***03**(2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar - [29]A. Azatov et al.,
*Determining Higgs couplings with a model-independent analysis of h*→*γγ*,*JHEP***06**(2012) 134 [arXiv:1204.4817] [INSPIRE].ADSCrossRefGoogle Scholar - [30]S. Dawson and E. Furlan,
*A Higgs conundrum with vector fermions*,*Phys. Rev.***D 86**(2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar - [31]M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang,
*Light stau phenomenology and the Higgs γγ rate*,*JHEP***07**(2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar - [32]A. Akeroyd and S. Moretti,
*Enhancement of H*→*γγ from doubly charged scalars in the Higgs triplet model*,*Phys. Rev.***D 86**(2012) 035015 [arXiv:1206.0535] [INSPIRE].ADSGoogle Scholar - [33]A. Azatov, S. Chang, N. Craig and J. Galloway,
*Higgs fits preference for suppressed down-type couplings: implications for supersymmetry*,*Phys. Rev.***D 86**(2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar - [34]M. Carena, I. Low and C.E. Wagner,
*Implications of a modified Higgs to diphoton decay width*,*JHEP***08**(2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar - [35]N. Bonne and G. Moreau,
*Reproducing the Higgs boson data with vector-like quarks*,*Phys. Lett.***B 717**(2012) 409 [arXiv:1206.3360] [INSPIRE].ADSCrossRefGoogle Scholar - [36]W.-F. Chang, J.N. Ng and J.M. Wu,
*Constraints on new scalars from the LHC*125*GeV Higgs signal*,*Phys. Rev.***D 86**(2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar - [37]B. Bellazzini, C. Petersson and R. Torre,
*Photophilic Higgs from sgoldstino mixing*,*Phys. Rev.***D 86**(2012) 033016 [arXiv:1207.0803] [INSPIRE].ADSGoogle Scholar - [38]I. Low, J. Lykken and G. Shaughnessy,
*Have we observed the Higgs (imposter)?*,*Phys. Rev.***D 86**(2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar - [39]R. Benbrik et al.,
*Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC*,*Eur. Phys. J.***C 72**(2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar - [40]T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia,
*Constraining anomalous Higgs interactions*,*Phys. Rev.***D 86**(2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar - [41]P.P. Giardino, K. Kannike, M. Raidal and A. Strumia,
*Is the resonance at*125*GeV the Higgs boson?*,*Phys. Lett.***B 718**(2012) 469 [arXiv:1207.1347] [INSPIRE].ADSCrossRefGoogle Scholar - [42]M.R. Buckley and D. Hooper,
*Are there hints of light stops in recent Higgs search results?*,*Phys. Rev.***D 86**(2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar - [43]J. Ellis and T. You,
*Global analysis of the Higgs candidate with mass*∼ 125*GeV*,*JHEP***09**(2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar - [44]J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott,
*First glimpses at Higgs*’*face*,*JHEP***12**(2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar - [45]D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan,
*Higgs after the discovery: a status report*,*JHEP***10**(2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar - [46]D. Bertolini and M. McCullough,
*The social Higgs*,*JHEP***12**(2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar - [47]A. Joglekar, P. Schwaller and C.E. Wagner,
*Dark matter and enhanced Higgs to di-photon rate from vector-like leptons*,*JHEP***12**(2012) 064 [arXiv:1207.4235] [INSPIRE].ADSCrossRefGoogle Scholar - [48]N. Haba, K. Kaneta, Y. Mimura and R. Takahashi,
*Enhancement of Higgs to diphoton decay width in non-perturbative Higgs model*,*Phys. Lett.***B 718**(2013) 1441 [arXiv:1207.5102] [INSPIRE].ADSCrossRefGoogle Scholar - [49]L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal,
*Does H*→*γγ taste like vanilla new physics?*,*JHEP***11**(2012) 085 [arXiv:1207.5254] [INSPIRE].ADSCrossRefGoogle Scholar - [50]D.S. Alves, P.J. Fox and N.J. Weiner,
*Higgs signals in a type I*2*HDM or with a sister Higgs*, arXiv:1207.5499 [INSPIRE]. - [51]T. Plehn and M. Rauch,
*Higgs couplings after the discovery*,*Europhys. Lett.***100**(2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar - [52]J. Kearney, A. Pierce and N. Weiner,
*Vectorlike fermions and Higgs couplings*,*Phys. Rev.***D 86**(2012) 113005 [arXiv:1207.7062] [INSPIRE].ADSGoogle Scholar - [53]T. Kitahara,
*Vacuum stability constraints on the enhancement of the h*→*γγ rate in the MSSM*,*JHEP***11**(2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar - [54]B.A. Dobrescu and J.D. Lykken,
*Coupling spans of the Higgs-like boson*,*JHEP***02**(2013) 073 [arXiv:1210.3342] [INSPIRE].ADSCrossRefGoogle Scholar - [55]S. Dawson, E. Furlan and I. Lewis,
*Unravelling an extended quark sector through multiple Higgs production?*,*Phys. Rev.***D 87**(2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar - [56]K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi,
*Higgs mixing and diphoton rate enhancement in NMSSM models*,*JHEP***02**(2013) 090 [arXiv:1211.0875] [INSPIRE].ADSCrossRefGoogle Scholar - [57]H. Davoudiasl, I. Lewis and E. Ponton,
*Electroweak phase transition, Higgs diphoton rate and new heavy fermions*, arXiv:1211.3449 [INSPIRE]. - [58]B. Batell, S. Jung and H.M. Lee,
*Singlet assisted vacuum stability and the Higgs to diphoton rate*,*JHEP***01**(2013) 135 [arXiv:1211.2449] [INSPIRE].ADSCrossRefGoogle Scholar - [59]T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia,
*Robust determination of the Higgs couplings: power to the data*,*Phys. Rev.***D 87**(2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar - [60]A. Azatov and J. Galloway,
*Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders*,*Int. J. Mod. Phys.***A 28**(2013) 1330004 [arXiv:1212.1380] [INSPIRE].ADSCrossRefGoogle Scholar - [61]T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt,
*The scale-invariant NMSSM and the*126*GeV Higgs boson*,*JHEP***02**(2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar - [62]K. Schmidt-Hoberg and F. Staub,
*Enhanced h*→*γγ rate in MSSM singlet extensions*,*JHEP***10**(2012) 195 [arXiv:1208.1683] [INSPIRE].ADSCrossRefGoogle Scholar - [63]M. Reece,
*Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude*, arXiv:1208.1765 [INSPIRE]. - [64]M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner,
*Vacuum stability and Higgs diphoton decays in the MSSM*,*JHEP***02**(2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar - [65]J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos,
*A phenomenological profile of the Higgs boson*,*Nucl. Phys.***B 106**(1976) 292 [INSPIRE].ADSGoogle Scholar - [66]M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov,
*Low-energy theorems for Higgs boson couplings to photons*,*Sov. J. Nucl. Phys.***30**(1979) 711 [*Yad. Fiz.***30**(1979) 1368] [INSPIRE]. - [67]C. Cheung and Y. Nomura,
*Higgs descendants*,*Phys. Rev.***D 86**(2012) 015004 [arXiv:1112.3043] [INSPIRE].ADSGoogle Scholar - [68]S. Dittmaier et al.,
*Handbook of LHC Higgs cross sections:*2*. Differential distributions*, arXiv:1201.3084 [INSPIRE]. - [69]ATLAS collaboration,
*Physics at a high-luminosity LHC with ATLAS (update)*, ATL-PHYS-PUB-2012-004, CERN, Geneva Switzerland (2012). - [70]C. Cheung, M. Papucci and K.M. Zurek,
*Higgs and dark matter hints of an oasis in the desert*,*JHEP***07**(2012) 105 [arXiv:1203.5106] [INSPIRE].ADSCrossRefGoogle Scholar - [71]K. Agashe, Y. Cui and R. Franceschini,
*Natural islands for a*125*GeV Higgs in the scale-invariant NMSSM*,*JHEP***02**(2013) 031 [arXiv:1209.2115] [INSPIRE].ADSCrossRefGoogle Scholar - [72]
*LEP SUSY working group webpage*, http://lepsusy.web.cern.ch/lepsusy/. - [73]C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott,
*Renormalization group scaling of Higgs operators and*Γ(*h*→*γγ*),*JHEP***04**(2013) 016 [arXiv:1301.2588] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar