Thermalization of the spectral function in strongly coupled two dimensional conformal field theories

  • V. Balasubramanian
  • A. Bernamonti
  • B. Craps
  • V. Keränen
  • E. Keski-Vakkuri
  • B. Müller
  • L. Thorlacius
  • J. Vanhoof
Open Access
Article

Abstract

Using Wigner transforms of Green functions, we discuss non-equilibrium generalizations of spectral functions and occupation numbers. We develop methods for computing time-dependent spectral functions in conformal field theories holographically dual to thin-shell AdS-Vaidya spacetimes.

Keywords

Gauge-gravity correspondence Holography and quark-gluon plasmas 

References

  1. [1]
    B.V. Jacak and B. Müller, The exploration of hot nuclear matter, Science 337 (2012) 310 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Dusling, T. Epelbaum, F. Gelis and R. Venugopalan, Quantum chaos in the perfect fluid: spectrum of initial fluctuations in the little bang, arXiv:1210.6053 [INSPIRE].
  4. [4]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalizationAn ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  7. [7]
    V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].Google Scholar
  8. [8]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  12. [12]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  16. [16]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393].
  19. [19]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  20. [20]
    S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS 5 black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.M. Chesler and D. Teaney, Dynamical Hawking radiation and holographic thermalization, arXiv:1112.6196 [INSPIRE].
  22. [22]
    P.M. Chesler and D. Teaney, Dilaton emission and absorption from far-from-equilibrium non-abelian plasma, arXiv:1211.0343 [INSPIRE].
  23. [23]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013), 061901 [arXiv:1211.2218] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Banerjee, R. Iyer and A. Mukhopadhyay, The holographic spectral function in non-equilibrium states, Phys. Rev. D 85 (2012) 106009 [arXiv:1202.1521] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Mukhopadhyay, Non-equilibrium fluctuation-dissipation relation from holography, Phys. Rev. D 87, 066004 (2013) [arXiv:1206.3311] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Kovtun and A. Starinets, Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 96 (2006) 131601 [hep-th/0602059] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in N = 4 Yang-Mills theory, Phys. Rev. D 74 (2006) 045025 [hep-ph/0602044] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Hillery et al., Distribution functions in physics: fundamentals, Phys. Rept. 106 (1984) 121.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan 22 (1940) 264.Google Scholar
  33. [33]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    G. Festuccia and H. Liu, Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP 04 (2006) 044 [hep-th/0506202] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    J.I. Kapusta, Finite temperature field theory (1989).Google Scholar
  39. [39]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    R.H. Brandenberger, T. Prokopec and V.F. Mukhanov, The entropy of the gravitational field, Phys. Rev. D 48 (1993) 2443 [gr-qc/9208009] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • V. Balasubramanian
    • 1
    • 2
  • A. Bernamonti
    • 3
    • 4
  • B. Craps
    • 4
  • V. Keränen
    • 5
    • 6
  • E. Keski-Vakkuri
    • 7
    • 8
  • B. Müller
    • 9
  • L. Thorlacius
    • 5
    • 6
  • J. Vanhoof
    • 4
  1. 1.David Rittenhouse LaboratoryUniv. of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Laboratoire de Physique Théorique, École Normale SupérieureParisFrance
  3. 3.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium
  4. 4.Theoretische NatuurkundeVrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  5. 5.NorditaKTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  6. 6.University of Iceland, Science InstituteReykjavikIceland
  7. 7.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  8. 8.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  9. 9.Department of PhysicsDuke UniversityDurhamU.S.A

Personalised recommendations