Dark radiation and decaying matter

Article

Abstract

Recent cosmological measurements favour additional relativistic energy density beyond the one provided by the three active neutrinos and photons of the Standard Model (SM). This is often referred to as “dark radiation”, suggesting the need of new light states in the theory beyond those of the SM. In this paper, we study and numerically explore the alternative possibility that this increase comes from the decay of some new form of heavy matter into the SM neutrinos. We study the constraints on the decaying matter density and its lifetime, using data from the Wilkinson Microwave Anisotropy Probe, the South Pole Telescope, measurements of the Hubble constant at present time, the results from high-redshift Type-I supernovae and the information on the Baryon Acoustic Oscillation scale. We, moreover, include in our analysis the information on the presence of additional contributions to the expansion rate of the Universe at the time of Big Bang Nucleosynthesis. We compare the results obtained in this decaying matter scenario with those obtained withthe standard analysis in terms of a constant Neff.

Keywords

Cosmology of Theories beyond the SM Neutrino Physics 

References

  1. [1]
    W. Hu and S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys. 40 (2002) 171 [astro-ph/0110414] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K.M. Nollett and G.P. Holder, An analysis of constraints on relativistic species from primordial nucleosynthesis and the cosmic microwave background, arXiv:1112.2683 [INSPIRE].
  6. [6]
    A.X. Gonzalez-Morales, R. Poltis, B.D. Sherwin and L. Verde, Are priors responsible for cosmology favoring additional neutrino species?, arXiv:1106.5052 [INSPIRE].
  7. [7]
    S. Joudaki, Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces, arXiv:1202.0005 [INSPIRE].
  8. [8]
    M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, Dark radiation in extended cosmological scenarios, Phys. Rev. D 86 (2012) 043509 [arXiv:1206.0109] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Das et al., The Atacama Cosmology Telescope: a measurement of the cosmic microwave background power spectrum at 148 and 218 GHz from the 2008 southern survey, Astrophys. J. 729 (2011) 62 [arXiv:1009.0847] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Keisler et al., A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  13. [13]
    A.G. Riess et al., A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder, Astrophys. J. 699 (2009) 539 [arXiv:0905.0695] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Hicken et al., CfA3: 185 type Ia supernova light curves from the CfA, Astrophys. J. 700 (2009) 331 [arXiv:0901.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B.A. Reid et al., Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies, Mon. Not. Roy. Astron. Soc. 404 (2010) 60 [arXiv:0907.1659] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.-M. Yang, D.N. Schramm, G. Steigman and R.T. Rood, Constraints on cosmology and neutrino physics from Big Bang nucleosynthesis, Astrophys. J. 227 (1979) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V. Simha and G. Steigman, Constraining the early-universe baryon density and expansion rate, JCAP 06 (2008) 016 [arXiv:0803.3465] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Izotov and T. Thuan, The primordial abundance of 4He: evidence for non-standard Big Bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in Helium abundance determinations, JCAP 05 (2010) 003 [arXiv:1001.5218] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Steigman, Neutrinos and Big Bang nucleosynthesis, Adv. High Energy Phys. 2012 (2012) 268321 [arXiv:1208.0032] [INSPIRE].Google Scholar
  22. [22]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M.A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev. D 79 (2009) 045026 [arXiv:0812.2249] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev. D 85 (2012) 083522 [arXiv:1112.4661] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Archidiacono, E. Calabrese and A. Melchiorri, The case for dark radiation, Phys. Rev. D 84 (2011) 123008 [arXiv:1109.2767] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Giunti and M. Laveder, Implications of 3 + 1 short-baseline neutrino oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Karagiorgi, M. Shaevitz and J. Conrad, Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, arXiv:1202.1024 [INSPIRE].
  32. [32]
    A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Fischler and J. Meyers, Dark radiation emerging after Big Bang nucleosynthesis?, Phys. Rev. D 83 (2011) 063520 [arXiv:1011.3501] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.L. Menestrina and R.J. Scherrer, Dark radiation from particle decays during Big Bang nucleosynthesis, Phys. Rev. D 85 (2012) 047301 [arXiv:1111.0605] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-thermal dark matter mimicking an additional neutrino species in the early universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Boehm, M.J. Dolan and C. McCabe, Increasing N eff with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].Google Scholar
  39. [39]
    M. Lattanzi and J. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Gong and X. Chen, Cosmological constraints on invisible decay of dark matter, Phys. Rev. D 77 (2008) 103511 [arXiv:0802.2296] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Ichikawa, T. Sekiguchi and T. Takahashi, Probing the effective number of neutrino species with cosmic microwave background, Phys. Rev. D 78 (2008) 083526 [arXiv:0803.0889] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Ichikawa, M. Kawasaki and F. Takahashi, Constraint on the effective number of neutrino species from the WMAP and SDSS LRG power spectra, JCAP 05 (2007) 007 [astro-ph/0611784] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Aoyama, K. Ichiki, D. Nitta and N. Sugiyama, Formulation and constraints on decaying dark matter with finite mass daughter particles, JCAP 09 (2011) 025 [arXiv:1106.1984] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.-Y. Wang and A.R. Zentner, Effects of unstable dark matter on large-scale structure and constraints from future surveys, Phys. Rev. D 85 (2012) 043514 [arXiv:1201.2426] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. De Lope Amigo, W. M.-Y. Cheung, Z. Huang and S.-P. Ng, Cosmological constraints on decaying dark matter, JCAP 06 (2009) 005 [arXiv:0812.4016] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [INSPIRE].
  47. [47]
    S. Palomares-Ruiz, Model-independent bound on the dark matter lifetime, Phys. Lett. B 665 (2008) 50 [arXiv:0712.1937] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L. Covi, M. Grefe, A. Ibarra and D. Tran, Neutrino signals from dark matter decay, JCAP 04 (2010) 017 [arXiv:0912.3521] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Esmaili, A. Ibarra and O.L. Peres, Probing the stability of superheavy dark matter particles with high-energy neutrinos, JCAP 11 (2012) 034 [arXiv:1205.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    O.E. Bjaelde, S. Das and A. Moss, Origin of ΔN eff as a result of an interaction between dark radiation and dark matter, JCAP 10 (2012) 017 [arXiv:1205.0553] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.J. Scherrer and M.S. Turner, Decaying particles do not heat up the universe, Phys. Rev. D 31 (1985) 681 [INSPIRE].ADSGoogle Scholar
  53. [53]
    R.J. Scherrer and M.S. Turner, Primordial nucleosynthesis with decaying particles. 1. Entropy producing decays. 2. Inert decays, Astrophys. J. 331 (1988) 19 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Kaplinghat, R.E. Lopez, S. Dodelson and R.J. Scherrer, Improved treatment of cosmic microwave background fluctuations induced by a late decaying massive neutrino, Phys. Rev. D 60 (1999) 123508 [astro-ph/9907388] [INSPIRE].ADSGoogle Scholar
  55. [55]
    K. Ichiki, M. Oguri and K. Takahashi, WMAP constraints on decaying cold dark matter, Phys. Rev. Lett. 93 (2004) 071302 [astro-ph/0403164] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Lattanzi, Decaying majoron dark matter and neutrino masses, AIP Conf. Proc. 966 (2007) 163 [arXiv:0802.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Dunkley et al., The Atacama Cosmology Telescope: cosmological parameters from the 2008 power spectra, Astrophys. J. 739 (2011) 52 [arXiv:1009.0866] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    E. Shirokoff et al., Improved constraints on cosmic microwave background secondary anisotropies from the complete 2008 South Pole Telescope data, Astrophys. J. 736 (2011) 61 [arXiv:1012.4788] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011) 129] [arXiv:1103.2976] [INSPIRE].
  61. [61]
    Supernova Cosmology Project collaboration, M. Kowalski et al., Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J. 686 (2008) 749 [arXiv:0804.4142] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    SDSS collaboration, W.J. Percival et al., Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf and Y.Y. Wong, Cosmological parameters from large scale structureGeometric versus shape information, JCAP 07 (2010) 022 [arXiv:1003.3999] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Direct determination of the solar neutrino fluxes from solar neutrino data, JHEP 05 (2010) 072 [arXiv:0910.4584] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G.M. Fuller, C.T. Kishimoto and A. Kusenko, Heavy sterile neutrinos, entropy and relativistic energy production and the relic neutrino background, arXiv:1110.6479 [INSPIRE].
  66. [66]
    M. Nemevšek, G. Senjanović and Y. Zhang, Warm dark matter in low scale left-right theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookU.S.A.
  3. 3.Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  4. 4.Wisconsin IceCube Particle Astrophysics Center (WIPAC) and Department of PhysicsUniversity of WisconsinMadisonU.S.A.

Personalised recommendations