Pre-equilibrium radial flow from central shock-wave collisions in AdS 5

  • Paul RomatschkeEmail author
  • J. Drew Hogg


Using gauge/gravity duality, central ultrarelativistic nucleus-nucleus collisions are modelled as collisions of shock waves in five-dimensional asymptotic AdS space. For early times after the collision, it is possible to analytically match the metric from the past to the future light-cone. This allows extraction of the pre-equilibrium energy-momentum tensor of the strongly coupled, large N gauge theory. For central collisions, this allows qualitative statements concerning the build-up of radial flow at mid-rapidity in AA and pA collisions. We find that the early-time radial flow buildup is identical to that expected from ideal hydrodynamics with an entropy density proportional to the square root of the product of the matter densities in the individual “nuclei”.


Quark-Gluon Plasma Classical Theories of Gravity Holography and quarkgluon plasmas 


  1. [1]
    PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    ATLAS collaboration, Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt{{{s_{{N\;N}}}}}=2.77 \) TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Baier, A.H. Mueller, D. Schiff and D. Son, ’Bottom upthermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Bjoraker and R. Venugopalan, From colored glass condensate to gluon plasma: equilibration in high-energy heavy ion collisions, Phys. Rev. C 63 (2001) 024609 [hep-ph/0008294] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett. 94 (2005) 072302 [nucl-th/0409068] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Z. Xu and C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade, Phys. Rev. C 71 (2005) 064901 [hep-ph/0406278] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Romatschke and R. Venugopalan, Collective non-abelian instabilities in a melting color glass condensate, Phys. Rev. Lett. 96 (2006) 062302 [hep-ph/0510121] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Berges, D. Gelfand, S. Scheffler and D. Sexty, Simulating plasma instabilities in SU(3) gauge theory, Phys. Lett. B 677 (2009) 210 [arXiv:0812.3859] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Kurkela and G.D. Moore, Bjorken flow, plasma instabilities and thermalization, JHEP 11 (2011) 120 [arXiv:1108.4684] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Dusling, T. Epelbaum, F. Gelis and R. Venugopalan, Instability induced pressure isotropization in a longitudinally expanding system, Phys. Rev. D 86 (2012) 085040 [arXiv:1206.3336] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: I. Falling into the AdS, Phys. Rev. D 77 (2008) 085013 [hep-ph/0610168] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Wu and P. Romatschke, Shock wave collisions in AdS 5 : approximate numerical solutions, Int. J. Mod. Phys. C 22 (2011) 1317 [arXiv:1108.3715] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013), 061901 [arXiv:1211.2218] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Steinbauer, The ultrarelativistic Reissner-Nordstrom field in the Colombeau algebra, J. Math. Phys. 38 (1997) 1614 [gr-qc/9606059] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Taliotis, Heavy ion collisions with transverse dynamics from evolving AdS geometries, JHEP 09 (2010) 102 [arXiv:1004.3500] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Avsar, E. Iancu, L. McLerran and D. Triantafyllopoulos, Shockwaves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Taliotis, Extra dimensions, black holes and fireballs at the LHC, arXiv:1212.0528 [INSPIRE].
  39. [39]
    H. Yoshino and Y. Nambu, High-energy headon collisions of particles and hoop conjecture, Phys. Rev. D 66 (2002) 065004 [gr-qc/0204060] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production from non-abelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Alver, M. Baker, C. Loizides and P. Steinberg, The PHOBOS glauber Monte Carlo, arXiv:0805.4411 [INSPIRE].
  42. [42]
    R. Baier and P. Romatschke, Causal viscous hydrodynamics for central heavy-ion collisions, Eur. Phys. J. C 51 (2007) 677 [nucl-th/0610108] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Physics, 390 UCBUniversity of ColoradoBoulderU.S.A.
  2. 2.Department of AstronomyUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations