Phenomenology of charged scalars in the CP-violating inert-doublet model

  • P. Osland
  • A. Pukhov
  • G. M. Pruna
  • M. Purmohammadi


We study the production and decay of charged scalars, η ±, in the context of a CP-Violating Inert-Doublet Model. The model is an extended version of the Inert Doublet Model with an extra Higgs doublet and provides new sources of CP violation and a dark matter candidate. As compared with the 2HDM, the particle spectrum contains two additional neutral scalars and a charged pair. These particles are subject to a Z 2 symmetry, but can be pair-produced in hadronic collisions. If a charged scalar is included in the pair, it decays to the stable dark-matter candidate (i.e., the lightest neutral inert scalar) plus Standard Model matter that consists of either two jets or a single lepton (from a virtual or real W or Z) plus missing transverse energy. Since the single production channel is available only at hadronic colliders, we consider the Large Hadron Collider environment, hence we discuss experimental perspectives and possible hallmarks of the model, such as events with a displaced vertex.


Higgs Physics Beyond Standard Model CP violation 


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Hambye and M.H. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Andreas, T. Hambye and M.H. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The inert doublet model and LEP II limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP 07 (2009) 090 [Erratum ibid. 1005 (2010) 066] [arXiv:0903.4010] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  14. [14]
    B. Grzadkowski, O. Ogreid and P. Osland, Natural multi-Higgs model with dark matter and CP-violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Grzadkowski, O. Ogreid, P. Osland, A. Pukhov and M. Purmohammadi, Exploring the CP-violating inert-doublet model, JHEP 06 (2011) 003 [arXiv:1012.4680] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Grzadkowski, O. Ogreid, P. Osland, A. Pukhov and M. Purmohammadi, Update on the CP-violating inert-doublet model, PoS(QFTHEP2011)067 [arXiv:1112.5853] [INSPIRE].
  19. [19]
    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, JHEP 11 (2012) 011 [arXiv:1205.6569] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X_s}\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    WMAP collaboration, G. Hinshaw et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: data processing, sky maps and basic results, Astrophys. J. Suppl. 180 (2009)225 [arXiv:0803.0732] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, micrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007)367 [hep-ph/0607059] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Huitu, K. Kannike, A. Racioppi and M. Raidal, Long-lived charged Higgs at LHC as a probe of scalar dark matter, JHEP 01 (2011) 010 [arXiv:1005.4409] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Semenov, LanHEPA package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].
  30. [30]
    W. Mader, J.-H. Park, G.M. Pruna, D. Stöckinger and A. Straessner, LHC explores what LEP hinted at: CP-violating type-I 2HDM, JHEP 09 (2012) 125 [arXiv:1205.2692] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, arXiv:1207.6082 [INSPIRE].
  32. [32]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  35. [35]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  37. [37]
    L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and detectors at CLIC: CLIC conceptual design report, arXiv:1202.5940 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • P. Osland
    • 1
  • A. Pukhov
    • 2
  • G. M. Pruna
    • 3
  • M. Purmohammadi
    • 1
  1. 1.Department of Physics and TechnologyUniversity of BergenBergenNorway
  2. 2.Skobeltsyn Inst. of Nuclear PhysicsMoscow State UnivMoscowRussia
  3. 3.Institut für Kern- und Teilchenphysik, TU DresdenDresdenGermany

Personalised recommendations