Advertisement

A longitudinal gauge degree of freedom and the Pais Uhlenbeck field

  • Jose Beltrán Jiménez
  • Enea Di Dio
  • Ruth Durrer
Article

Abstract

We show that a longitudinal gauge degree of freedom for a vector field is equivalent to a Pais-Uhlenbeck scalar field. With the help of this equivalence, we can determine natural interactions of this field with scalars and fermions. Since the theory has a global U(1) symmetry, we have the usual conserved current of the charged fields, thanks to which the dynamics of the scalar field is not modified by the interactions. We use this fact to consistently quantize the theory even in the presence of interactions. We argue that such a degree of freedom can only be excited by gravitational effects like the inflationary era of the early universe and may play the role of dark energy in the form of an effective cosmological constant whose value is linked to the inflation scale.

Keywords

Cosmology of Theories beyond the SM Gauge Symmetry 

References

  1. [1]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Discovery of a supernova explosion at half the age of the universe and its cosmological implications, Nature 391 (1998) 51 [astro-ph/9712212] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Supernova Search Team collaboration, B.P. Schmidt et al., The high Z supernova search: measuring cosmic deceleration and global curvature of the universe using type-IA supernovae, Astrophys. J. 507 (1998) 46 [astro-ph/9805200] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), C. R. Phys. 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Durrer and R. Maartens, Dark energy and dark gravity, Gen. Rel. Grav. 40 (2008) 301 [arXiv:0711.0077] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. [9]
    E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115] [hep-th/0601213] [INSPIRE].Google Scholar
  11. [11]
    T.P. Sotiriou and V. Faraoni, f (R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A. De Felice and S. Tsujikawa, f (R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].Google Scholar
  13. [13]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    C. de Rham and L. Heisenberg, Cosmology of the Galileon from massive gravity, Phys. Rev. D 84 (2011) 043503 [arXiv:1106.3312] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    C. Burrage, C. de Rham and L. Heisenberg, de Sitter Galileon, JCAP 05 (2011) 025 [arXiv:1104.0155] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.V. Ostrogradsky, Mémoire sur les équations différentielles relatives aux problèmes des isopérimètres, Mem. Ac. St. Petersburg 6 (1850) 385.Google Scholar
  18. [18]
    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T.-j. Chen, M. Fasiello, E.A. Lim and A.J. Tolley, Higher derivative theories with constraints: exorcising Ostrogradskis ghost, arXiv:1209.0583 [INSPIRE].
  20. [20]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Beltran Jimenez and A.L. Maroto, The dark magnetism of the universe, Mod. Phys. Lett. A 26 (2011) 3025 [arXiv:1112.1106] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Beltran Jimenez and A.L. Maroto, The electromagnetic dark sector, Phys. Lett. B 686 (2010) 175 [arXiv:0903.4672] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Beltran Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Beltran Jimenez and A.L. Maroto, Dark energy: the absolute electric potential of the universe, Int. J. Mod. Phys. D 18 (2009) 2243 [arXiv:0905.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Pais and G.E. Uhlenbeck, On field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. [26]
    C.M. Bender and P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008) 110402 [arXiv:0706.0207] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P.D. Mannheim, Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37 (2007) 532 [hep-th/0608154] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. [28]
    A.V. Smilga, Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009) 017 [arXiv:0808.0139] [INSPIRE].MathSciNetGoogle Scholar
  29. [29]
    A.V. Smilga, Benign versus malicious ghosts in higher-derivative theories, Nucl. Phys. B 706 (2005) 598 [hep-th/0407231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Robert and A.V. Smilga, Supersymmetry vs ghosts, J. Math. Phys. 49 (2008) 042104 [math-ph/0611023] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P.A.M. Dirac, Lectures on quantum mechanics, Courier Dover Publications (2001).Google Scholar
  33. [33]
    C.M. Bender and P.D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, arXiv:0804.4190 [INSPIRE].
  34. [34]
    C.M. Bender and P.D. Mannheim, Giving up the ghost, J. Phys. 41 (2008) 304018 [arXiv:0807.2607] [INSPIRE].MathSciNetGoogle Scholar
  35. [35]
    E.C.G. Stückelberg, Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte, Helv. Phys. Acta 11 (1938) 225.zbMATHGoogle Scholar
  36. [36]
    E.C.G. Stückelberg, Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte (II), Helv. Phys. Acta 11 (1938) 299.Google Scholar
  37. [37]
    E.C.G. Stückelberg, Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte (III), Helv. Phys. Acta 11 (1938) 312.Google Scholar
  38. [38]
    S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge U.K. (1995) [INSPIRE].
  39. [39]
    C.M. Bender and H.F. Jones, Interactions of Hermitian and non-Hermitian Hamiltonians, J. Phys. A 41 (2008) 244006 [arXiv:0709.3605] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill, New York U.S.A. (1980) [INSPIRE].Google Scholar
  41. [41]
    N.N. Bogolyubov and D.V. Shirkov, Introduction to the theory of quantized fields, Interscience Publishers Inc. (1959) [INSPIRE].
  42. [42]
    D. Zwanziger, Physical states in quantum electrodynamics, Phys. Rev. D 14 (1976) 2570 [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Anisimov, E. Babichev and A. Vikman, B-inflation, JCAP 06 (2005) 006 [astro-ph/0504560] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Ringeval, T. Suyama, T. Takahashi, M. Yamaguchi and S. Yokoyama, Dark energy from primordial inflationary quantum fluctuations, Phys. Rev. Lett. 105 (2010) 121301 [arXiv:1006.0368] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Jose Beltrán Jiménez
    • 1
    • 2
  • Enea Di Dio
    • 2
  • Ruth Durrer
    • 2
  1. 1.Centre for Cosmology, Particle Physics and PhenomenologyInstitute of Mathematics and Physics, Louvain UniversityLouvain-la-NeuveBelgium
  2. 2.Département de Physique Théorique and Center for Astroparticle PhysicsUniversité de GenèveGenève 4Switzerland

Personalised recommendations