Towards the fast scrambling conjecture

  • Nima Lashkari
  • Douglas Stanford
  • Matthew Hastings
  • Tobias Osborne
  • Patrick Hayden
Article

Abstract

Many proposed quantum mechanical models of black holes include highly non-local interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.

Keywords

Lattice Integrable Models M(atrix) Theories Black Holes Quantum Dissipative Systems 

References

  1. [1]
    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].
  2. [2]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S.R. Das and S.D. Mathur, Excitations of D strings, entropy and duality, Phys. Lett. B 375 (1996)103 [hep-th/9601152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  10. [10]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V. Balasubramanian and B. Czech, Quantitative approaches to information recovery from black holes, Class. Quant. Grav. 28 (2011) 163001 [arXiv:1102.3566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  13. [13]
    D.N. Page, Black hole information, in Proceedings of the 5th Canadian conference on general relativity and relativistic astrophysics, R.B. Mann and R.G. McLenaghan eds., (1993) [hep-th/9305040] [INSPIRE].
  14. [14]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].
  20. [20]
    C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].ADSCrossRefGoogle Scholar
  21. [21]
    J. Emerson, E. Livine and S. Lloyd, Convergence conditions for random quantum circuits, Phys. Rev. A 72 (2005) 060302 [quant-ph/0503210].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Commun. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].ADSCrossRefGoogle Scholar
  24. [24]
    W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].ADSCrossRefGoogle Scholar
  25. [25]
    I.T. Diniz and D. Jonathan, Comment on the paperrandom quantum circuits are approximate 2-designs”, Commun. Math. Phys. 304 (2011) 281 [arXiv:1006.4202].MathSciNetADSCrossRefMATHGoogle Scholar
  26. [26]
    E. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B. Nachtergaele and R. Sims, Lieb-Robinson bounds and the exponential clustering theorem, Commun. Math. Phys. 265 (2006) 119 [math-ph/0506030].MathSciNetADSCrossRefMATHGoogle Scholar
  28. [28]
    M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun. Math. Phys. 265 (2006) 781 [math-ph/0507008] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  29. [29]
    C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.L. Barbon and J.M. Magan, Chaotic fast scrambling at black holes, Phys. Rev. D 84 (2011) 106012 [arXiv:1105.2581] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    J. von Neumann, Proof of the ergodic theorem and the H-theorem in quantum mechanics, Eur. Phys. J. H 35 (2010) 201 [Z. Phys. 57 (1929) 30] [arXiv:1003.2133].Google Scholar
  33. [33]
    J. Gemmer, M. Michel and G. Mahler, Quantum thermodynamicsemergence of thermodynamic behavior within composite quantum systems, second edition, Lect. Notes Phys. 784, Springer-Verlag, Berlin Germany (2009).Google Scholar
  34. [34]
    N. Linden, S. Popescu, A.J. Short and A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79 (2009) 061103 [arXiv:0812.2385].MathSciNetADSGoogle Scholar
  35. [35]
    S. Goldstein, J.L. Lebowitz, R. Tumulka and N. Zanghì, Canonical typicality, Phys. Rev. Lett. 96 (2006) 050403.MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Popescu, A.J. Short and A. Winter, The foundations of statistical mechanics from entanglement: individual states vs. averages, Nature Phys. 2 (2006) 754 [quant-ph/0511225].ADSCrossRefGoogle Scholar
  37. [37]
    P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. 101 (2008) 190403 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Bocchieri and A. Loinger, Ergodic foundation of quantum statistical mechanics, Phys. Rev. 114 (1959)948.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S. Lloyd, Black holes, demons, and the loss of coherence, Ph.D. thesis, Rockefeller University, New York U.S.A. (1988).Google Scholar
  40. [40]
    H. Tasaki, From quantum dynamics to the canonical distribution: general picture and a rigorous example, Phys. Rev. Lett. 80 (1998) 1373.MathSciNetADSCrossRefMATHGoogle Scholar
  41. [41]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].ADSGoogle Scholar
  44. [44]
    A. Riera, C. Gogolin and J. Eisert, Thermalization in nature and on a quantum computer, Phys. Rev. Lett. 108 (2012) 080402 [arXiv:1102.2389].ADSCrossRefGoogle Scholar
  45. [45]
    M. Rigol and M. Srednicki, Alternatives to eigenstate thermalization, Phys. Rev. Lett. 108 (2012)110601 [arXiv:1108.0928].ADSCrossRefGoogle Scholar
  46. [46]
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).MATHGoogle Scholar
  47. [47]
    M. Fannes, A continuity property of the entropy density for spin lattice systems, Commun. Math. Phys. 31 (1973) 291.MathSciNetADSCrossRefMATHGoogle Scholar
  48. [48]
    I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Springer, Germany (1991).MATHGoogle Scholar
  49. [49]
    L. Arnold, Stochastic differential equations: theory and applications, Dover, New York U.S.A. (1974).MATHGoogle Scholar
  50. [50]
    R. Raussendorf, D.E. Browne and H.J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68 (2003) 022312 [quant-ph/0301052].ADSCrossRefGoogle Scholar
  51. [51]
    M. van den Nest, A. Miyake, W. Dür and H.J. Briegel, Universal resources for measurement-based quantum computation, Phys. Rev. Lett. 97 (2006) 150504 [quant-ph/0604010].CrossRefGoogle Scholar
  52. [52]
    M. Hein, J. Eisert and H.J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69 (2004) 062311 [quant-ph/0307130].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    V.F. Kolchin, Random graphs, Cambridge University Press, Cambridge U.K. (1999).MATHGoogle Scholar
  54. [54]
    M. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69 (2004) 104431 [cond-mat/0305505] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Hayden and A. Winter, The fidelity alternative and quantum identification, arXiv:1003.4994.
  56. [56]
    P. Hayden, M. Horodecki, J. Yard and A. Winter, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7 [quant-ph/0702005].MathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    B. Nachtergaele, H. Raz, B. Schlein and R. Sims, Lieb-Robinson bounds for harmonic and anharmonic lattice systems, Commun. Math. Phys. 286 (2009) 1073 [arXiv:0712.3820].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Nima Lashkari
    • 1
  • Douglas Stanford
    • 2
  • Matthew Hastings
    • 3
    • 4
  • Tobias Osborne
    • 5
  • Patrick Hayden
    • 1
    • 6
    • 7
  1. 1.Department of PhysicsMcGill UniversityMontrealCanada
  2. 2.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A
  3. 3.Department of PhysicsDuke UniversityDurhamU.S.A
  4. 4.Microsoft Station QSanta BarbaraU.S.A
  5. 5.Institut für Theoretische PhysikHannoverGermany
  6. 6.School of Computer ScienceMcGill UniversityMontrealCanada
  7. 7.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations