Conformal algebra: R-matrix and star-triangle relation

Article

Abstract

The main purpose of this paper is the construction of the R-operator which acts in the tensor product of two infinite-dimensional representations of the conformal algebra and solves Yang-Baxter equation. We build the R-operator as a product of more elementary operators S1, S2 and S3. Operators S1 and S3 are identified with intertwining operators of two irreducible representations of the conformal algebra and the operator S2 is obtained from the intertwining operators S1 and S3 by a certain duality transformation. There are star-triangle relations for the basic building blocks S1, S2 and S3 which produce all other relations for the general R-operators. In the case of the conformal algebra of n-dimensional Euclidean space we construct the R-operator for the scalar (spin part is equal to zero) representations and prove that the star-triangle relation is a well known star-triangle relation for propagators of scalar fields. In the special case of the conformal algebra of the 4-dimensional Euclidean space, the R-operator is obtained for more general class of infinite-dimensional (differential) representations with nontrivial spin parts. As a result, for the case of the 4-dimensional Euclidean space, we generalize the scalar star- triangle relation to the most general star-triangle relation for the propagators of particles with arbitrary spins.

Keywords

Quantum Groups Conformal and W Symmetry Integrable Hierarchies 

References

  1. [1]
    P.A. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Mack and A. Salam, Finite-Component Field Representations of Conformal Group, Ann. Phys. 53 (1969) 255.MathSciNetGoogle Scholar
  3. [3]
    K. Koller, The Significance of Conformal Inversion in Quantum Field Theory, Commun. Math. Phys. 40 (1975) 15.MathSciNetADSCrossRefMATHGoogle Scholar
  4. [4]
    G. Mack, All Unitary Ray Representations of the Conformal Group SU(2,2) with Positive Energy, Commun. Math. Phys. 55 (1977) 1.MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect Notes Phys. 63 (1977) 1.ADSCrossRefGoogle Scholar
  6. [6]
    I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal Invariance in Quantum Field Theory, Scuola Normale Superiore, Pisa, Italy (1978).MATHGoogle Scholar
  7. [7]
    V.K. Dobrev and V.B. Petkova, Elementary Representations and Intertwining Operators for the Group SU*(4), Rept. Math. Phys. 13 (1978) 233.MathSciNetADSCrossRefMATHGoogle Scholar
  8. [8]
    V. Dobrev, Elementary representations and intertwining operators for SU(2, 2). 1., J. Math. Phys. 26 (1985) 235 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  9. [9]
    S. Ferrara, A. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    W. Siegel, Embedding versus 6D twistors, arXiv:1204.5679 [INSPIRE].
  11. [11]
    S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, arXiv:1204.3894 [INSPIRE].
  13. [13]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S.M. Kuzenko, Conformally compactified Minkowski superspaces revisited, JHEP 10 (2012) 135 [arXiv:1206.3940] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    P.P. Kulish and E.K. Sklyanin, On the solutions of the Yang-Baxter equation, Zap. Nauchn. Sem. LOMI 95 (1980) 129.MathSciNetGoogle Scholar
  16. [16]
    P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method. Recent developments, Lect. Notes Phys. v 151 (1982) 61.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    P. Kulish, N.Y. Reshetikhin and E. Sklyanin, Yang-Baxter Equation and Representation Theory. 1., Lett. Math. Phys. 5 (1981) 393 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    P.P. Kulish and N. Yu. Reshetikhin, On GL3 -invariant solutions of the Yang-Baxter equation and associated quantum systems, Zap. Nauchn. Sem. LOMI 120 (1982) 92.MathSciNetGoogle Scholar
  19. [19]
    L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization Of Lie Groups And Lie Algebras, Lengingrad Math. J. 1 (1990) 193 [Alg. Anal. 1 (1989) 178].MathSciNetMATHGoogle Scholar
  20. [20]
    L. Faddeev, How algebraic Bethe ansatz works for integrable model, in Quantum Symmetries/Symetries Qantiques, proceedings of Les-Houches summer school, LXIV, A. Connes, K. Kawedzki, J. Zinn-Justin eds., North-Holland (1998), pg. 149-211 [hep-th/9605187] [INSPIRE].
  21. [21]
    S.E. Derkachov and A.N. Manashov, R-Matrix and Baxter Q-Operators for the Noncompact SL(N,C) Invarianit Spin Chain, SIGMA 2 (2006) 084.MathSciNetGoogle Scholar
  22. [22]
    S.E. Derkachov and A.N. Manashov, Factorization of R-matrix and Baxter Q-operators for generic sl(N) spin chains, J. Phys. A 42 (2009) 075204 [arXiv:0809.2050] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    S. Derkachov and A. Manashov, General solution of the Yang-Baxter equation with the symmetry group SL(n, \( \mathbb{C} \)), Algebra i Analiz 21 (2009) 1 [St. Petersburg Math. J. 21 (2010) 513].Google Scholar
  24. [24]
    N.Yu. Reshetikhin, Algebraic Bethe-Ansatz for SO(N) invariant transfer-matrices, Zap. Nauch. Sem. LOMI 169 (1988) 122 [J. Math. Sci. 54 (1991) 940].MATHGoogle Scholar
  25. [25]
    M. Okado, Quantum r matrices related to the spin representations of B(n) and D(n), Commun. Math. Phys. 134 (1990) 467 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  26. [26]
    A. Kuniba and J. Suzuki, Analytic Bethe Ansatz for fundamental representations of Yangians, Commun. Math. Phys. 173 (1995) 225 [hep-th/9406180] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  27. [27]
    V.G. Drinfeld, Hopf algebras and quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.Google Scholar
  28. [28]
    A. Molev, M. Nazarov and G. Olshansky, Yangians and classical Lie algebras, Russ. Math. Surveys 51 (1996) 205 [hep-th/9409025] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    A.P. Isaev, A.I. Molev and O.V. Ogievetsky, A new fusion procedure for the Brauer algebra and evaluation homomorphisms, Int. Math. Res. Not. 2012 (2012) 2571 [arXiv:1101.1336].MathSciNetMATHGoogle Scholar
  30. [30]
    R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, U.K. (1982).MATHGoogle Scholar
  31. [31]
    V.V. Bazhanov and S.M. Sergeev, A Master solution of the quantum Yang-Baxter equation and classical discrete integrable equations, arXiv:1006.0651 [INSPIRE].
  32. [32]
    V.V. Bazhanov and S.M. Sergeev, Elliptic gamma-function and multi-spin solutions of the Yang-Baxter equation, Nucl. Phys. B 856 (2012) 475 [arXiv:1106.5874] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    V.V. Bazhanov, R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Q-Operators and Representations of Yangians, Nucl. Phys. B 850 (2011) 148 [arXiv:1010.3699] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Rej and F. Spill, The Yangian of sl(n|m) and the universal R-matrix, JHEP 05 (2011) 012 [arXiv:1008.0872] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Operators and Hamiltonians fornearly allIntegrable Closed gl(n) Spin Chains, arXiv:1112.3600 [INSPIRE].
  36. [36]
    Z. Tsuboi, Wronskian solutions of the T, Q and Y-systems related to infinite dimensional unitarizable modules of the general linear superalgebra gl(M|N), Nucl. Phys. B 870 (2013) 92 [arXiv:1109.5524] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi and A. Zabrodin, Classical tau-function for quantum spin chains, arXiv:1112.3310 [INSPIRE].
  38. [38]
    R. Shankar and E. Witten, The S matrix of the kinks of the \( {{\left( {\overline{\psi}\psi } \right)}^2} \) model, Nucl. Phys. B 141 (1978) 349 [Erratum ibid. B 148 (1979) 538] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Karowski and H. Thun, Complete S matrix of the O(2N) Gross-Neveu model, Nucl. Phys. B 190 (1981) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Al.B. Zamolodchikov, Factorizable Scattering in Assimptotically Free 2-dimensional Models of Quantum Field Theory, Ph.D. Thesis, Dubna (1979), unpublished.Google Scholar
  41. [41]
    D. Chicherin, S. Derkachov and A. Isaev, Spinorial R-matrix, arXiv:1303.4929 [INSPIRE].
  42. [42]
    L. Lipatov, High-energy asymptotics of multicolor QCD and exactly solvable lattice models, hep-th/9311037 [INSPIRE].
  43. [43]
    L. Lipatov, High-energy asymptotics of multicolor QCD and two-dimensional conformal field theories, Phys. Lett. B 309 (1993) 394 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Relativistic Factorized S Matrix in Two-Dimensions Having O(N) Isotopic Symmetry, Nucl. Phys. B 133 (1978) 525 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A. Zamolodchikov, ’Fishnetdiagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    I.M. Gelfand and M.A. Naimark, Unitary representations of the classical groups (in Russian), Izdat. Nauk SSSR, Moscow - Leningrad, Trudy Mat. Inst. Steklov. 36 (1950) 3 [Unitäre Darstellungen der klassischen Gruppen (in German), Akademie-Verlag, Berlin (1957)].MathSciNetGoogle Scholar
  48. [48]
    A. Knapp and E. Stein, Intertwining operators for semi-simple Lie groups, Ann. Math. 93 (1971) 489.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A.W. Knapp, Representation theory of semisimple groups: an overview based on examples, Princeton University Press, N.J., U.S.A. (1986).MATHGoogle Scholar
  50. [50]
    G.M. Sotkov and R.P. Zaikov, Conformal Invariant Two Point and Three Point Functions for Fields with Arbitrary Spin, Rept. Math. Phys. 12 (1977) 375.ADSCrossRefGoogle Scholar
  51. [51]
    E. Fradkin and M.Y. Palchik, Recent Developments in Conformal Invariant Quantum Field Theory, Phys. Rept. 44 (1978) 249 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    A. Vasiliev, Y. Pismak and Y. Khonkonen, 1/N Expansion: Calculation of the Exponents η and ν in the Order 1/N 2 for Arbitrary Number Of Dimensions, Theor. Math. Phys. 47 (1981) 465 [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    A.N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Routledge Chapman Hall (2004).Google Scholar
  54. [54]
    L. Lipatov, Duality symmetry of Reggeon interactions in multicolor QCD, Nucl. Phys. B 548 (1999) 328 [hep-ph/9812336] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Derkachov, Baxters Q-operator for the homogeneous XXX spin chain, J. Phys. A 32 (1999) 5299 [solv-int/9902015] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    D.J. Broadhurst, Summation of an infinite series of ladder diagrams, Phys. Lett. B 307 (1993) 132 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    S.E. Derkachov, G. Korchemsky and A. Manashov, Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter Q operator and separation of variables, Nucl. Phys. B 617 (2001) 375 [hep-th/0107193] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    A.P. Isaev, Quantum groups and Yang-Baxter equations, Sov. J. Part. Nucl. 26 (1995) 501. [extended version: A.P. Isaev, Quantum groups and Yang-Baxter equations, preprint MPIM (Bonn), MPI2004 (2004), http://www.mpim-bonn.mpg.de/html/preprints/preprints.html].
  62. [62]
    A. Isaev, Multiloop Feynman integrals and conformal quantum mechanics, Nucl. Phys. B 662 (2003) 461 [hep-th/0303056] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    A. Isaev, Operator approach to analytical evaluation of Feynman diagrams, Phys. Atom. Nucl. 71 (2008) 914 [arXiv:0709.0419] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    I. Mitra, External leg amputation in conformal invariant three-point function, Eur. Phys. J. C 71 (2011) 1621 [arXiv:0907.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Vasiliev, S.E. Derkachov and N. Kivel, A Technique for calculating the gamma matrix structures of the diagrams of a total four fermion interaction with infinite number of vertices in d = (2 + ϵ)-dimensional regularization, Theor. Math. Phys. 103 (1995) 487 [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Bogoliubov Lab. of Theoretical Physics, JINRDubnaRussia
  3. 3.Chebyshev LaboratorySt.-Petersburg State UniversitySaint-PetersburgRussia
  4. 4.ITPMM.V.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations