A first top partner hunter’s guide

  • Andrea De SimoneEmail author
  • Oleksii Matsedonskyi
  • Riccardo Rattazzi
  • Andrea Wulzer
Open Access


We provide a systematic effective lagrangian description of the phenomenology of the lightest top-partners in composite Higgs models. Our construction is based on symmetry, on selection rules and on plausible dynamical assumptions. The structure of the resulting simplified models depends on the quantum numbers of the lightest top partner and of the operators involved in the generation of the top Yukawa. In all cases the phenomenology is conveniently described by a small number of parameters, and the results of experimental searches are readily interpreted as a test of naturalness. We recast presently available experimental bounds on heavy fermions into bounds on top partners: LHC has already stepped well inside the natural region of parameter space.


Beyond Standard Model Phenomenological Models Technicolor and Composite Models 


  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan, Flavor at SSC energies: A new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 429 [arXiv:1205.5803] [INSPIRE].Google Scholar
  7. [7]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Dissertori, E. Furlan, F. Moortgat and P. Nef, Discovery potential of top-partners in a realistic composite Higgs model with early LHC data, JHEP 09 (2010) 019 [arXiv:1005.4414] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. De Curtis, M. Redi and A. Tesi, The 4D Composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Mrazek and A. Wulzer, A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7/fb of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-130 (2012).
  25. [25]
    CMS collaboration, Search for a heavy partner of the top quark with charge 5/3, CMS-PAS-B2G-12-003.
  26. [26]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zb \( \overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  30. [30]
    C. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.S. Willenbrock and D.A. Dicus, Production of Heavy Quarks from W Gluon Fusion, Phys. Rev. D 34 (1986) 155 [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Godfrey, T. Gregoire, P. Kalyniak, T.A. Martin and K. Moats, Exploring the heavy quark sector of the Bestest Little Higgs model at the LHC, JHEP 04 (2012) 032 [arXiv:1201.1951] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E.L. Berger and Q.-H. Cao, Next-to-Leading Order Cross sections for New Heavy Fermion Production at Hadron Colliders, Phys. Rev. D 81 (2010) 035006 [arXiv:0909.3555] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.M. Campbell and R.K. Ellis, Radiative corrections to Zb \( \overline{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N.D. Christensen and C. Duhr, Feyn Rules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Azatov et al., Higgs boson production via vector-like top-partner decays: Diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].ADSGoogle Scholar
  44. [44]
    K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the Top Partner at the LHC using Multi-b-Jet Channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].ADSGoogle Scholar
  46. [46]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].ADSGoogle Scholar
  47. [47]
    N. Vignaroli, Early discovery of top partners and test of the Higgs nature, Phys. Rev. D 86 (2012) 075017 [arXiv:1207.0830] [INSPIRE].ADSGoogle Scholar
  48. [48]
    C. Rogan, Kinematical variables towards new dynamics at the LHC, arXiv:1006.2727 [INSPIRE].
  49. [49]
    CMS collaboration, Inclusive search for squarks and gluinos in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].ADSGoogle Scholar
  50. [50]
    CMS collaboration, Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 123 [arXiv:1204.1088] [INSPIRE].ADSGoogle Scholar
  51. [51]
    CMS collaboration, Search for a Vector-like Quark with Charge 2/3 in t + Z Events from pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    CMS collaboration, Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 103 [arXiv:1203.5410] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    J. Berger, J. Hubisz and M. Perelstein, A Fermionic Top Partner: Naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Andrea De Simone
    • 1
    • 2
    Email author
  • Oleksii Matsedonskyi
    • 3
  • Riccardo Rattazzi
    • 4
  • Andrea Wulzer
    • 3
    • 5
  1. 1.CERN, Theory DivisionGeneva 23Switzerland
  2. 2.SISSA and INFN, Sezione di TriesteTriesteItaly
  3. 3.Dipartimento di Fisica e Astronomia and INFN, Sezione di PadovaPadovaItaly
  4. 4.Institut de Théorie des Phénomènes PhysiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  5. 5.Institute for Theoretical Physics, ETH ZurichZurichSwitzerland

Personalised recommendations