Measurement of the fragmentation fraction ratio f s /f d and its dependence on B meson kinematics


The relative production rate of \( B_s^0 \) and B 0 mesons is determined with the hadronic decays \( B_s^0\to D_s^{-}{\pi^{+}} \) and B 0D K +. The measurement uses data corresponding to 1.0 fb−1 of pp collisions at a centre-of-mass energy of \( \sqrt{s}=7 \) TeV recorded in the forward region with the LHCb experiment. The ratio of production rates, f s /f d , is measured to be 0.238 ± 0.004 ± 0.015 ± 0.021, where the first uncertainty is statistical, the second systematic, and the third theoretical. This is combined with a previous LHCb measurement to obtain f s /f d  = 0.256 ± 0.020. The dependence of f s /f d on the transverse momentum and pseudorapidity of the B meson is determined using the decays \( B_s^0\to D_s^{-}{\pi^{+}} \) and B 0D π+. There is evidence for a decrease with increasing transverse momentum, whereas the ratio remains constant as a function of pseudorapidity. In addition, the ratio of branching fractions of the decays B 0D K + and B 0D π+ is measured to be 0.0822 ± 0.0011 (stat) ± 0.0025 (syst).


  1. [1]

    LHCb collaboration, First evidence for the decay B s μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  2. [2]

    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    LHCb collaboration, Determination of f s /f d for 7 TeV pp collisions and a measurement of the branching fraction of the decay B d D K +”, Phys. Rev. Lett. 107 (2011) 211801 [arXiv:1106.4435] [INSPIRE].

    Article  Google Scholar 

  4. [4]

    LHCb collaboration, Measurement of b-hadron production fractions in 7 TeVpp collisions, Phys. Rev. D 85 (2012) 032008 [arXiv:1111.2357] [INSPIRE].

    Google Scholar 

  5. [5]

    M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: General arguments and the case of heavy light final states, Nucl. Phys. B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R. Fleischer, N. Serra and N. Tuning, A new strategy for B s branching ratio measurements and the search for new physics in \( B_s^0 \)μ + μ , Phys. Rev. D 82 (2010) 034038 [arXiv:1004.3982] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  8. [8]

    CLEO collaboration, S. Dobbs et al., Measurement of absolute hadronic branching fractions of D mesons and e + e \( D\overline{D} \) cross-sections at the ψ(3770), Phys. Rev. D 76 (2007) 112001 [arXiv:0709.3783] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    CLEO collaboration, J. Alexander et al., Absolute measurement of hadronic branching fractions of the \( D_s^{+} \) meson, Phys. Rev. Lett. 100 (2008) 161804 [arXiv:0801.0680] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    R. Fleischer, N. Serra and N. Tuning, Tests of Factorization and SU(3) Relations in B Decays into Heavy-Light Final States, Phys. Rev. D 83 (2011) 014017 [arXiv:1012.2784] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    J.A. Bailey et al., B s D s /BD semileptonic form-factor ratios and their application to BR( \( B_s^0 \)μ + μ ), Phys. Rev. D 85 (2012) 114502 [Erratum ibid. D 86 (2012) 039904] [arXiv:1202.6346] [INSPIRE].

  12. [12]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  13. [13]

    R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055 [INSPIRE].

  14. [14]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.

  16. [16]

    D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    ADS  Article  Google Scholar 

  19. [19]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    M. Clemencic et al., The LHCb simulation application, Gauss : design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

    ADS  Article  Google Scholar 

  21. [21]

    L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont U.S.A. (1984).

    MATH  Google Scholar 

  22. [22]

    BABAR collaboration, P. del Amo Sanchez et al., Dalitz plot analysis of \( D_s^{+} \)K + K π +, Phys. Rev. D 83 (2011) 052001 [arXiv:1011.4190] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    CLEO collaboration, G. Bonvicini et al., Dalitz plot analysis of the D +K π + π + decay, Phys. Rev. D 78 (2008) 052001 [arXiv:0802.4214] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    T. Skwarnicki, A study of the radiative cascade transitions between the Υ and Υ resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986) [INSPIRE].

Download references

Author information