Unitary truncations and critical gravity: a toy model

  • Eric A. Bergshoeff
  • Sjoerd de Haan
  • Wout Merbis
  • Massimo Porrati
  • Jan Rosseel
Open Access
Article

Abstract

We investigate a higher-derivative scalar field model in a fixed d + 1 dimensional AdS background as a toy model for a gravitational dual to a higher-rank logarithmic CFT. The holographic two-point correlation functions on the boundary agree with higher-rank LCFT correlation functions. For odd rank, the theory allows for a truncation to a nontrivial subspace with non-negative scalar product. We discuss possible implications for higherderivative critical gravity theories.

Keywords

AdS-CFT Correspondence Models of Quantum Gravity 

References

  1. [1]
    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Carlip, S. Deser, A. Waldron and D. Wise, Cosmological Topologically Massive Gravitons and Photons, Class. Quant. Grav. 26 (2009) 075008 [arXiv:0803.3998] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Giribet, M. Kleban and M. Porrati, Topologically Massive Gravity at the Chiral Point is Not Chiral, JHEP 10 (2008) 045 [arXiv:0807.4703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Maloney, W. Song and A. Strominger, Chiral Gravity, Log Gravity and Extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  10. [10]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  12. [12]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Grumiller and O. Hohm, AdS 3 /LCFT 2 : Correlators in New Massive Gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    D. Grumiller and I. Sachs, AdS 3 /LCFT 2 - Correlators in Cosmological Topologically Massive Gravity, JHEP 03 (2010) 012 [arXiv:0910.5241] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H. Lü and C. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Deser et al., Critical Points of D-Dimensional Extended Gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Alishahiha and R. Fareghbal, D-Dimensional Log Gravity, Phys. Rev. D 83 (2011) 084052 [arXiv:1101.5891] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, Modes of Log Gravity, Phys. Rev. D 83 (2011) 104038 [arXiv:1102.4091] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Porrati and M.M. Roberts, Ghosts of Critical Gravity, Phys. Rev. D 84 (2011) 024013 [arXiv:1104.0674] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Lü, Y. Pang and C. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.-J. Hyun, W.-J. Jang, J.-H. Jeong and S.-H. Yi, Noncritical Einstein-Weyl Gravity and the AdS/CFT Correspondence, JHEP 01 (2012) 054 [arXiv:1111.1175] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  23. [23]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Flohr, Operator product expansion in logarithmic conformal field theory, Nucl. Phys. B 634 (2002) 511 [hep-th/0107242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A 18 (2003) 4497 [hep-th/0111228] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    E.A. Bergshoeff, S. de Haan, W. Merbis and J. Rosseel, A Non-relativistic Logarithmic Conformal Field Theory from a Holographic Point of View, JHEP 09 (2011) 038 [arXiv:1106.6277] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I.I. Kogan, Singletons and logarithmic CFT in AdS/CFT correspondence, Phys. Lett. B 458 (1999) 66 [hep-th/9903162] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Ghezelbash, M. Khorrami and A. Aghamohammadi, Logarithmic conformal field theories and AdS correspondence, Int. J. Mod. Phys. A 14 (1999) 2581 [hep-th/9807034] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    M. Flato and C. Fronsdal, The Singleton Dipole, Commun. Math. Phys. 108 (1987) 469 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002)159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    H. Lü, Y. Pang and C. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Sjoerd de Haan
    • 1
  • Wout Merbis
    • 1
  • Massimo Porrati
    • 2
  • Jan Rosseel
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations