The minimal theory for R-parity violation at the LHC

  • Pavel Fileviez Pérez
  • Sogee Spinner


We investigate the simplest gauge theory for spontaneous R-parity breaking and its testability at the LHC. This theory, based on a local B-L gauge symmetry, can be considered as the simplest framework for understanding the origin of the R-parity violating interactions, giving rise to potential lepton number violating signals and suppressed baryon number violating operators. The full spectrum of the theory and the constraints coming from neutrino masses are analyzed in detail. We discuss the proton decay issue and the possible dark matter candidates. In order to assess the testability of the theory we study the properties of the new gauge boson, the neutralino decays and the main production channels for the charged sleptons at the LHC. We find that final states with four charged leptons, three of them with the same-sign, and four jets are the most striking signals for the testability of the lepton number violation associated with spontaneous R-parity violation at the LHC.


Supersymmetry Phenomenology 


  1. [1]
    P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976)159 [INSPIRE].ADSGoogle Scholar
  2. [2]
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981)150 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Salam and J. Strathdee, Supersymmetry and fermion number conservation, Nucl. Phys. B 87 (1975)85 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.J. Hayashi and A. Murayama, Radiative breaking of SU(2)R × U(1)B−L gauge symmetry induced by broken N = 1 supergravity in a left-right symmetric model, Phys. Lett. B 153 (1985)251 [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Aulakh and R.N. Mohapatra, Neutrino as the supersymmetric partner of the majoron, Phys. Lett. B 119 (1982) 136 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.P. Martin, Implications of supersymmetric models with natural R-parity conservation, Phys. Rev. D 54 (1996) 2340 [hep-ph/9602349] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Masiero and J. Valle, A model for spontaneous R parity breaking, Phys. Lett. B 251 (1990)273 [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.S. Aulakh, A. Melfo, A. Rasin and G. Senjanović, Seesaw and supersymmetry or exact R-parity, Phys. Lett. B 459 (1999) 557 [hep-ph/9902409] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C.S. Aulakh, B. Bajc, A. Melfo, A. Rasin and G. Senjanović, SO(10) theory of R-parity and neutrino mass, Nucl. Phys. B 597 (2001) 89 [hep-ph/0004031] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [INSPIRE].ADSGoogle Scholar
  15. [15]
    V. Barger, P. Fileviez Perez and S. Spinner, Minimal gauged U(1)B−L model with spontaneous R-parity violation, Phys. Rev. Lett. 102 (2009) 181802 [arXiv:0812.3661] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Fileviez Perez, M. Gonzalez-Alonso and S. Spinner, Gauge origin of M-parity and the μ-term in supersymmetry, Phys. Rev. D 84 (2011) 095014 [arXiv:1109.1823] [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Feldman, P. Fileviez Perez and P. Nath, R-parity conservation via the Stückelberg mechanism: LHC and dark matter signals, JHEP 01 (2012) 038 [arXiv:1109.2901] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal low-energy supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L.E. Ibáñez and G.G. Ross, SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in guts, Phys. Lett. B 110 (1982) 215 [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Ambroso and B. Ovrut, The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP 10 (2009) 011 [arXiv:0904.4509] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Ambroso and B.A. Ovrut, The B-L/electroweak hierarchy in smooth heterotic compactifications, Int. J. Mod. Phys. A 25 (2010) 2631 [arXiv:0910.1129] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    M. Ambroso and B.A. Ovrut, The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications, arXiv:1005.5392 [INSPIRE].
  23. [23]
    P. Fileviez Perez and S. Spinner, The fate of R-parity, Phys. Rev. D 83 (2011) 035004 [arXiv:1005.4930] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.S. Carena, A. Daleo, B.A. Dobrescu and T.M. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].ADSGoogle Scholar
  25. [25]
    V. Barger, P. Fileviez Perez and S. Spinner, Three layers of neutrinos, Phys. Lett. B 696 (2011)509 [arXiv:1010.4023] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D.K. Ghosh, G. Senjanović and Y. Zhang, Naturally light sterile neutrinos from theory of R-parity, Phys. Lett. B 698 (2011) 420 [arXiv:1010.3968] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, arXiv:1111.1239 [INSPIRE].
  30. [30]
    S. Borgani, A. Masiero and M. Yamaguchi, Light gravitinos as mixed dark matter, Phys. Lett. B 386 (1996) 189 [hep-ph/9605222] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000)388 [hep-ph/0005214] [INSPIRE].ADSGoogle Scholar
  32. [32]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Buchmüller, Gravitino dark matter, AIP Conf. Proc. 1200 (2010) 155 [arXiv:0910.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Thomas and W. Porod, Determining R-parity violating parameters from neutrino and LHC data, JHEP 10 (2011) 089 [arXiv:1106.4658] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Quasi-stable neutralinos at the LHC, JHEP 09 (2011) 119 [arXiv:1107.0926] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ATLAS collaboration, G. Aad et al., Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector, Phys. Rev. D 88 (2012) 032004 [arXiv:1201.1091] [INSPIRE].
  38. [38]
    S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [INSPIRE].ADSGoogle Scholar
  39. [39]
    ATLAS collaboration, Search for new physics in events with four charged leptons, ATLAS-CONF-2011-144 (2011).Google Scholar
  40. [40]
    ATLAS collaboration, Search for new phenomena in events with three or more charged leptons, ATLAS-CONF-2011-158 (2011).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics (CCPP)New York UniversityNew YorkU.S.A
  2. 2.International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations