Advertisement

Nearly Kähler heterotic compactifications with fermion condensates

  • Athanasios Chatzistavrakidis
  • Olaf Lechtenfeld
  • Alexander D. Popov
Article

Abstract

We revisit AdS4 heterotic compactifications on nearly Kähler manifolds in the presence of H-flux and certain fermion condensates. Unlike previous studies, we do not assume the vanishing of the supersymmetry variations. Instead we determine the full equations of motion originating from the ten-dimensional action, and subsequently we provide explicit solutions to them on nearly Kähler manifolds at first order in α′. The Bianchi identity is also taken into account in order to guarantee the absence of all anomalies. In the presence of H-flux, which is identified with the torsion of the internal space, as well as of fermion condensates in the gaugino and dilatino sectors, new solutions are determined. These solutions provide a full classification of consistent backgrounds of heterotic supergravity under our assumptions. All the new solutions are non-supersymmetric, while previously known supersymmetric ones are recovered too. Our results indicate that fully consistent (supersymmetric or not) heterotic vacua on nearly Kähler manifolds are scarce, even on AdS4, and they can be completely classified.

Keywords

Flux compactifications Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis and G. Zoupanos, NonKähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino Condensation in Superstring Models, Phys. Lett. B 156 (1985) 55 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J. Derendinger, L.E. Ibáñez and H.P. Nilles, On the Low-Energy D = 4, N = 1 Supergravity Theory Extracted from the D = 10, N = 1 Superstring, Phys. Lett. B 155 (1985) 65 [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Heterotic string theory on nonKähler manifolds with H flux and gaugino condensate, Fortsch. Phys. 52 (2004) 483 [hep-th/0310021] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.R. Frey and M. Lippert, AdS strings with torsion: Non-complex heterotic compactifications, Phys. Rev. D 72 (2005) 126001 [hep-th/0507202] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    P. Manousselis, N. Prezas and G. Zoupanos, Supersymmetric compactifications of heterotic strings with fluxes and condensates, Nucl. Phys. B 739 (2006) 85 [hep-th/0511122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSGoogle Scholar
  9. [9]
    O. Lechtenfeld, C. Nolle and A.D. Popov, Heterotic compactifications on nearly Kähler manifolds, JHEP 09 (2010) 074 [arXiv:1007.0236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-Dimensional Maxwell-Einstein Supergravity, Its Currents and the Issue of Its Auxiliary Fields, Nucl. Phys. B 195 (1982) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Chapline and N. Manton, Unification of Yang-Mills Theory and Supergravity in Ten-Dimensions, Phys. Lett. B 120 (1983) 105 [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E. Bergshoeff and M. de Roo, The Quartic Effective Action Of The Heterotic String And Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on String Cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.-B. Butruille, Homogeneous nearly Kähler manifolds, arXiv:math/0612655.
  17. [17]
    L. Castellani, L. Romans and N. Warner, Symmetries Of Coset Spaces And Kaluza-klein Supergravity, Annals Phys. 157 (1984) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    F. Mueller-Hoissen and R. Stuckl, Coset Spaces And Ten-dimensional Unified Theories, Class. Quant. Grav. 5 (1988) 27 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  19. [19]
    A.D. Popov, Hermitian- Yang-Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi-Yau twistor 6-manifolds, Nucl. Phys. B 828 (2010) 594 [arXiv:0907.0106] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Baum, Twistor spinors on Lorentzian symmetric spaces, math/9803089.
  21. [21]
    P. Manousselis and G. Zoupanos, Dimensional reduction over coset spaces and supersymmetry breaking, JHEP 03 (2002) 002 [hep-ph/0111125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    F. Farakos, A. Kehagias and E.N. Saridakis, Vanishing Cosmological Constant by Gravitino-Dressed Compactification of 1 1D Supergravity, JHEP 12 (2011) 107 [arXiv:1111.1577] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Klaput, A. Lukas and C. Matti, Bundles over Nearly-Kähler Homogeneous Spaces in Heterotic String Theory, JHEP 09 (2011) 100 [arXiv:1107.3573] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Chatzistavrakidis, P. Manousselis and G. Zoupanos, Reducing the Heterotic Supergravity on nearly-Kähler coset spaces, Fortsch. Phys. 57 (2009) 527 [arXiv:0811.2182] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    A. Chatzistavrakidis and G. Zoupanos, Dimensional Reduction of the Heterotic String over nearly-Kähler manifolds, JHEP 09 (2009) 077 [arXiv:0905.2398] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compactifications, JHEP 03 (2006) 005 [hep-th/0507173] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Athanasios Chatzistavrakidis
    • 1
  • Olaf Lechtenfeld
    • 2
    • 3
  • Alexander D. Popov
    • 4
  1. 1.Bethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnBonnGermany
  2. 2.Institut für Theoretische Physik, Leibniz Universität HannoverHannoverGermany
  3. 3.Centre for Quantum Engineering and Space-Time Research, Leibniz Universität HannoverHannoverGermany
  4. 4.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia

Personalised recommendations