Advertisement

Higher spin black holes from CFT

  • Matthias R. Gaberdiel
  • Thomas Hartman
  • Kewang JinEmail author
Article

Abstract

Higher spin gravity in three dimensions has explicit black holes solutions, carrying higher spin charge. We compute the free energy of a charged black hole from the holographic dual, a 2d CFT with extended conformal symmetry, and find exact agreement with the bulk thermodynamics. In the CFT, higher spin corrections to the free energy can be calculated at high temperature from correlation functions of \( \mathcal{W} \)-algebra currents.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Black Holes 

References

  1. [1]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  3. [3]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  4. [4]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, arXiv:1112.1016 [INSPIRE].
  7. [7]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higZher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2+1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, arXiv:1106.2580 [INSPIRE].
  17. [17]
    K. Papadodimas and S. Raju, Correlation functions in holographic minimal models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Ahn, The coset spin-4 Casimir operator and its three-point functions with scalars, JHEP 02 (2012) 027 [arXiv:1111.0091] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.-M. Chang and X. Yin, Correlators in W N minimal model revisited, arXiv:1112.5459 [INSPIRE].
  20. [20]
    M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, arXiv:1111.3926 [INSPIRE].
  21. [21]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H.-S. Tan, Aspects of three-dimensional spin-4 gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Kraus, Lectures on black holes and the AdS 3/CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, Prog. Math. 129 (1995) 165.MathSciNetGoogle Scholar
  31. [31]
    W.-q. Wang, \( {\mathcal{W}_{1 + \infty }} \), W 3 algebra and Friedan-Martinec-Shenker bosonization, Commun. Math. Phys. 195 (1998) 95 [q-alg/9708008] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    Y. Zhu, Vertex operator algebras, elliptic functions and modular forms, J. Am. Math. Soc. 9 (1996) 237.zbMATHCrossRefGoogle Scholar
  33. [33]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
  34. [34]
    M.R. Gaberdiel and C.A. Keller, Modular differential equations and null vectors, JHEP 09 (2008) 079 [arXiv:0804.0489] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Matthias R. Gaberdiel
    • 1
  • Thomas Hartman
    • 2
  • Kewang Jin
    • 1
    Email author
  1. 1.Institut für Theoretische Physik, ETH ZürichZürichSwitzerland
  2. 2.Institute for Advanced Study, School of Natural SciencesPrincetonUSA

Personalised recommendations