Aspects of plane wave (matrix) string dynamics



We analyse two issues that arise in the context of (matrix) string theories in plane wave backgrounds, namely (1) the use of Brinkmann- versus Rosen-variables in the quantum theory for general plane waves (which we settle conclusively in favour of Brinkmann variables), and (2) the regularisation of the quantum dynamics for a certain class of singular plane waves (discussing the benefits and limitations of regularisations of the plane-wave metric itself).


Penrose limit and pp-wave background M(atrix) Theories Spacetime Singularities 


  1. [1]
    A.A. Tseytlin, Exact solutions of closed string theory, Class. Quant. Grav. 12 (1995) 2365 [hep-th/9505052] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    G.T. Horowitz and A.R. Steif, Space-Time Singularities in String Theory, Phys. Rev. Lett. 64 (1990) 260 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    G.T. Horowitz and A.R. Steif, Strings in strong gravitational fields, Phys. Rev. D 42 (1990) 1950 [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. de Vega and N. Sanchez, Strings falling into space-time singularities, Phys. Rev. D 42 (1992) 2783.Google Scholar
  5. [5]
    S. Hawking and G. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press (1973).Google Scholar
  6. [6]
    M. Blau, M. Borunda, M. O’Loughlin and G. Papadopoulos, Penrose limits and space-time singularities, Class. Quant. Grav. 21 (2004) L43 [hep-th/0312029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Blau, M. Borunda, M. O’Loughlin and G. Papadopoulos, The Universality of Penrose limits near space-time singularities, JHEP 07 (2004) 068 [hep-th/0403252] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    G. Papadopoulos, Power-law singularities in string theory and M-theory, Class. Quant. Grav. 21 (2004) 5097 [hep-th/0404172] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  9. [9]
    R. Penrose, Any space-time has a plane wave as a limit, in Differential geometry and relativity, Reidel, Dordrecht (1976), pg. 271.Google Scholar
  10. [10]
    R. Güven, Plane wave limits and T duality, Phys. Lett. B 482 (2000) 255 [hep-th/0005061] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Blau, J.M. Figueroa-O’Farrill and G. Papadopoulos, Penrose limits, supergravity and brane dynamics, Class. Quant. Grav. 19 (2002) 4753 [hep-th/0202111] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    P. Szekeres and V. Iyer, Spherically symmetric singularities and strong cosmic censorship, Phys. Rev. D 47 (1993) 4362 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M. Blau, D. Frank and S. Weiss, Fermi coordinates and Penrose limits, Class. Quant. Grav. 23 (2006) 3993 [hep-th/0603109] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    M. Blau and S. Weiss, Penrose limits versus string expansions, Class. Quant. Grav. 25 (2008) 125014 [arXiv:0710.3480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Blau and M. O’Loughlin, DLCQ and Plane Wave Matrix Big Bang Models, JHEP 09 (2008) 097 [arXiv:0806.3255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    A. Sen, D0-branes on T n and matrix theory, Adv. Theor. Math. Phys. 2 (1998) 51 [hep-th/9709220] [INSPIRE].MathSciNetMATHGoogle Scholar
  18. [18]
    A. Sen, An Introduction to nonperturbative string theory, hep-th/9802051 [INSPIRE].
  19. [19]
    B. Craps, S. Sethi and E.P. Verlinde, A Matrix big bang, JHEP 10 (2005) 005 [hep-th/0506180] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [INSPIRE].
  21. [21]
    T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Papadopoulos, J. Russo and A.A. Tseytlin, Solvable model of strings in a time dependent plane wave background, Class. Quant. Grav. 20 (2003) 969 [hep-th/0211289] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    M. Blau and M. O’Loughlin, Homogeneous plane waves, Nucl. Phys. B 654 (2003) 135 [hep-th/0212135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Blau, M. O’Loughlin, G. Papadopoulos and A.A. Tseytlin, Solvable models of strings in homogeneous plane wave backgrounds, Nucl. Phys. B 673 (2003) 57 [hep-th/0304198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Blau, M. Borunda and M. O’Loughlin, On the Hagedorn behaviour of singular scale-invariant plane waves, JHEP 10 (2005) 047 [hep-th/0412228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G.T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. O’Loughlin and L. Seri, The Non-Abelian gauge theory of matrix big bangs, JHEP 07 (2010) 036 [arXiv:1003.0620] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    B. Craps, F. De Roo and O. Evnin, Quantum evolution across singularities: The Case of geometrical resolutions, JHEP 04 (2008) 036 [arXiv:0801.4536] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    O. Evnin and T. Nguyen, On discrete features of the wave equation in singular pp-wave backgrounds, JHEP 09 (2008) 105 [arXiv:0806.3057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    B. Craps, F. De Roo and O. Evnin, Can free strings propagate across plane wave singularities?, JHEP 03 (2009) 105 [arXiv:0812.2900] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Craps and O. Evnin, Light-like Big Bang singularities in string and matrix theories, Class. Quant. Grav. 28 (2011) 204006 [arXiv:1103.5911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    K. Madhu and K. Narayan, String spectra near some null cosmological singularities, Phys. Rev. D 79 (2009) 126009 [arXiv:0904.4532] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    K. Narayan, Null cosmological singularities and free strings, Phys. Rev. D 81 (2010) 066005 [arXiv:0909.4731] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    K. Narayan, Null cosmological singularities and free strings: II, JHEP 01 (2011) 145 [arXiv:1012.0113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Corichi, J. Cortez and G.A. Mena Marugan, Quantum Gowdy T 3 model: A Unitary description, Phys. Rev. D 73 (2006) 084020 [gr-qc/0603006] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    J. Cortez, G.A. Mena Marugan, R. Serodio and J.M. Velhinho, Uniqueness of the Fock quantization of a free scalar field on S 1 with time dependent mass, Phys. Rev. D 79 (2009) 084040 [arXiv:0903.5508] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Cortez, G.A. Mena Marugan and J.M. Velhinho, Fock quantization of a scalar field with time dependent mass on the three-sphere: Unitarity and uniqueness, Phys. Rev. D 81 (2010) 044037 [arXiv:1001.0946] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Cortez, G.A. Mena Marugan, J. Olmedo and J.M. Velhinho, A Unique Fock quantization for fields in non-stationary spacetimes, JCAP 10 (2010) 030 [arXiv:1004.5320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J. Cortez, G.A.M. Marugan, J. Olmedo and J.M. Velhinho, Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes, Phys. Rev. D 83 (2011) 025002 [arXiv:1101.2397] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Gibbons, Quantized Fields Propagating in Plane Wave Space-Times, Commun. Math. Phys. 45 (1975) 191 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A New maximally supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    R. Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B 625 (2002) 70 [hep-th/0112044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond plane wave background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    H. Kleinert and A. Chervyakov, Simple explicit formulas for Gaussian path integrals with time dependent frequencies, Phys. Lett. A 245 (1998) 345 [quant-ph/9803016] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    M. Blau and M. O’Loughlin, Multiple M2-Branes and Plane Waves, JHEP 09 (2008) 112 [arXiv:0806.3253] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B. Craps and O. Evnin, Adiabaticity and emergence of classical space-time in time-dependent matrix theories, JHEP 01 (2011) 130 [arXiv:1011.0820] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    G. Milanesi, M. O’Loughlin, L. Seri, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Matthias Blau
    • 1
  • Martin O’Loughlin
    • 2
  • Lorenzo Seri
    • 3
  1. 1.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsBern UniversityBernSwitzerland
  2. 2.University of Nova GoricaNova GoricaSlovenia
  3. 3.SISSATriesteItaly

Personalised recommendations