Quantum states to brane geometries via fuzzy moduli spaces of giant gravitons

Article

Abstract

Eighth-BPS local operators in \( \mathcal{N} = {4} \) SYM are dual to quantum states arising from the quantization of a moduli space of giant gravitons in AdS5× S5. Earlier results on the quantization of this moduli space give a Hilbert space of multiple harmonic oscillators in 3 dimensions. We use these results, along with techniques from fuzzy geometry, to develop a map between quantum states and brane geometries. In particular there is a map between the oscillator states and points in a discretization of the base space in the toric fibration of the moduli space. We obtain a geometrical decomposition of the space of BPS states with labels consisting of U(3) representations along with U(N) Young diagrams and associated group theoretic multiplicities. Factorization properties in the counting of BPS states lead to predictions for BPS world-volume excitations of specific brane geometries. Some of our results suggest an intriguing complementarity between localisation in the moduli space of branes and localisation in space-time.

Keywords

Intersecting branes models AdS-CFT Correspondence Non-Commutative Geometry 1/N Expansion 

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809[hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets: Pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D. Berenstein, Shape and holography: Studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons - with Strings Attached. III., JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar Integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. de Mello Koch, B.A.E. Mohammed and S. Smith, Nonplanar Integrability: Beyond the SU(2) Sector, arXiv:1106.2483 [INSPIRE].
  19. [19]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    S.R. Das, A. Jevicki and S.D. Mathur, Vibration modes of giant gravitons, Phys. Rev. D 63 (2001) 024013 [hep-th/0009019] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Brown, Cut-and-join operators and N = 4 super Yang-Mills, JHEP 05 (2010) 058 [arXiv:1002.2099] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Y. Kimura and H. Lin, Young diagrams, Brauer algebras and bubbling geometries, JHEP 01 (2012) 121 [arXiv:1109.2585] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP 03 (2007) 031 [hep-th/0606088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    C.E. Beasley, BPS branes from baryons, JHEP 11 (2002) 015 [hep-th/0207125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills from giant gravitons, JHEP 12 (2007) 006 [hep-th/0606087] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Balachandran, B.P. Dolan, J.-H. Lee, X. Martin and D. O’Connor, Fuzzy complex projective spaces and their star products, J. Geom. Phys. 43 (2002) 184 [hep-th/0107099] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    G. Alexanian, A. Balachandran, G. Immirzi and B. Ydri, Fuzzy CP 2, J. Geom. Phys. 42 (2002) 28 [hep-th/0103023] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    H. Grosse and A. Strohmaier, Towards a nonperturbative covariant regularization in 4 − D quantum field theory, Lett. Math. Phys. 48 (1999) 163 [hep-th/9902138] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    C. Sämann, Fuzzy toric geometries, JHEP 02 (2008) 111 [hep-th/0612173] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.P. Trivedi and S. Vaidya, Fuzzy cosets and their gravity duals, JHEP 09 (2000) 041 [hep-th/0007011] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford and New York (1980).MATHGoogle Scholar
  38. [38]
    J.J. Heckman and H. Verlinde, Evidence for F(uzz) Theory, JHEP 01 (2011) 044 [arXiv:1005.3033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    K. Furuuchi and K. Okuyama, D-branes Wrapped on Fuzzy del Pezzo Surfaces, JHEP 01 (2011) 043 [arXiv:1008.5012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Iqbal, A. Neitzke and C. Vafa, A Mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769 [hep-th/0111068] [INSPIRE].MathSciNetGoogle Scholar
  41. [41]
  42. [42]
    J. Madore, The Fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    D. Martelli and J. Sparks, Dual Giant Gravitons in Sasaki-Einstein Backgrounds, Nucl. Phys. B 759 (2006) 292 [hep-th/0608060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    A. Hamilton, J. Murugan and A. Prinsloo, Lessons from giant gravitons on AdS 5× T 1,1, JHEP 06 (2010) 017 [arXiv:1001.2306] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    W. Fulton and J. Harris, Representation theory: a first course, Springer (1991).Google Scholar
  46. [46]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    T.W. Brown, Permutations and the Loop, JHEP 06 (2008) 008 [arXiv:0801.2094] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A Study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    A. Sen, Dyon - monopole bound states, selfdual harmonic forms on the multi - monopole moduli space and SL(2, \( \mathbb{Z} \)) invariance in string theory, Phys. Lett. B 329 (1994) 217 [hep-th/9402032] [INSPIRE].ADSGoogle Scholar
  51. [51]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    L. Maoz and V.S. Rychkov, Geometry quantization from supergravity: The Case ofBubbling AdS’, JHEP 08 (2005) 096 [hep-th/0508059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    A. Jevicki and S. Ramgoolam, Noncommutative gravity from the AdS/CFT correspondence, JHEP 04 (1999) 032 [hep-th/9902059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  55. [55]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    J. de Boer, M. Johnstone, M. Sheikh-Jabbari and J. Simon, Emergent IR Dual 2d CFTs in Charged AdS5 Black Holes, arXiv:1112.4664 [INSPIRE].
  57. [57]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    O. Lunin, Brane webs and 1/4-BPS geometries, JHEP 09 (2008) 028 [arXiv:0802.0735] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics, Queen MaryUniversity of LondonLondonU.K.

Personalised recommendations