On “new massive” 4D gravity

  • Eric A. Bergshoeff
  • J. J. Fernández-Melgarejo
  • Jan Rosseel
  • Paul K. Townsend
Open Access
Article

Abstract

We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a “dual” graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D “new massive gravity”, we call this 4D model (linearized) “new massive dual gravity”. We analyse its massless limit, and discuss similarities to the Eddington-Schrödinger model.

Keywords

Classical Theories of Gravity Gauge Symmetry 

References

  1. [1]
    A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].ADSGoogle Scholar
  2. [2]
    K. Hinterbichler, Theoretical aspects of massive gravity, arXiv:1105.3735 [INSPIRE].
  3. [3]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    D. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. de Rham, G. Gabadadze, D. Pirtskhalava, A.J. Tolley and I. Yavin, Nonlinear dynamics of 3D massive gravity, JHEP 06 (2011) 028 [arXiv:1103.1351] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    K. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A.S. Eddington, The mathematical theory of relativity, Cambridge University Press, Cambridge U.K. (1924).MATHGoogle Scholar
  11. [11]
    E. Schrödinger, Space-time structure, Cambridge University Press, Cambridge U.K. (1950).MATHGoogle Scholar
  12. [12]
    S. Deser, P. Townsend and W. Siegel, Higher rank representations of lower spin, Nucl. Phys. B 184 (1981) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  14. [14]
    C. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    T.L. Curtright and P.G. Freund, Massive dual fields, Nucl. Phys. B 172 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Gonzalez, A. Khoudeir, R. Montemayor and L. Urrutia, Duality for massive spin two theories in arbitrary dimensions, JHEP 09 (2008) 058 [arXiv:0806.3200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Andringa et al., Massive 3D supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].ADSMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    E.A. Bergshoeff, M. Kovacevic, J. Rosseel, P.K. Townsend and Y. Yin, A spin-4 analog of 3D massive gravity, Class. Quant. Grav. 28 (2011) 245007 [arXiv:1109.0382] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Deser, Ghost-free, finite, fourth order D = 3 (alas) gravity, Phys. Rev. Lett. 103 (2009) 101302 [arXiv:0904.4473] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    J.A. Garcia and B. Knaepen, Couplings between generalized gauge fields, Phys. Lett. B 441 (1998) 198 [hep-th/9807016] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • J. J. Fernández-Melgarejo
    • 1
    • 2
  • Jan Rosseel
    • 1
  • Paul K. Townsend
    • 3
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Grupo de Fısíca Teórica y Cosmología, Dept. de FísicaUniversity of MurciaMurciaSpain
  3. 3.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations