A double sigma model for double field theory

Article

Abstract

We show that generalised metric equation of motion of doubled field theory (the vanishing of the generalised Ricci tensor) can be derived as the background field equation of a double sigma model. Thus the double field theory is the effective field theory for the sigma model.

Keywords

String Duality Sigma Models 

References

  1. [1]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  5. [5]
    N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background Field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    K. Sfetsos, K. Siampos and D.C. Thompson, Renormalization of Lorentz non-invariant actions and manifest T-duality, Nucl. Phys. B 827 (2010) 545 [arXiv:0910.1345] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B 827 (2010) 281 [arXiv:0910.0431] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, arXiv:1112.5296 [INSPIRE].
  12. [12]
    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Graña and D. Marques, Gauged double field theory, arXiv:1201.2924 [INSPIRE].
  17. [17]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    B. Zwiebach, Double field theory, T-duality and Courant brackets, arXiv:1109.1782 [INSPIRE].
  20. [20]
    W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE].
  21. [21]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. Jensen, The KK-monopole/N S5-brane in doubled geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double field theory for double D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    C. Hull and R. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    C. Hull and R. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095 [hep-th/0607015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    K. Becker, M. Becker, C. Vafa and J. Walcher, Moduli stabilization in non-geometric backgrounds, Nucl. Phys. B 770 (2007) 1 [hep-th/0611001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D.S. Berman and N.B. Copland, The string partition function in Hulls doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10 (2006) 062 [hep-th/0605114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    S.P. Chowdhury, Superstring partition functions in the doubled formalism, JHEP 09 (2007) 127 [arXiv:0707.3549] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    D.C. Thompson, T-duality invariant approaches to string theory, arXiv:1012.4393 [INSPIRE].
  50. [50]
    J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model, Annals Phys. 134 (1981) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    S. Mukhi, The geometric background field method, renormalization and the Wess-Zumino term in nonlinear σ-models, Nucl. Phys. B 264 (1986) 640 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    C. Hull and P. Townsend, Finiteness and conformal invariance in nonlinear σ-models, Nucl. Phys. B 274 (1986) 349 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    C.G. Callan Jr., I.R. Klebanov and M. Perry, String theory effective actions, Nucl. Phys. B 278 (1986) 78 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Centre for Quantum SpacetimeSogang UniversitySeoulKorea

Personalised recommendations