Multi-scalar-singlet extension of the standard model — The case for dark matter and an invisible Higgs boson

Article

Abstract

We consider a simple extension of the Standard Model by the addition of N real scalar gauge singlets \( \overrightarrow \varphi \) that are candidates for Dark Matter. By collecting theoretical and experimental constraints we determine the space of allowed parameters of the model. The possibility of ameliorating the little hierarchy problem within the multisinglet model is discussed. The Spergel-Steinhardt solution of the Dark Matter density cusp problem is revisited. It is shown that fitting the recent CRESST-II data for Dark Matter nucleus scattering implies that the standard Higgs boson decays predominantly into pairs of Dark Matter Scalars. In that case discovery of the Higgs boson at LHC and Tevatron is impossible. The most likely mass of the dark scalars is in the range 15 GeV ≾ mφ ≾ 50 GeV with BR(\( h \to \overrightarrow \varphi \overrightarrow \varphi \)) up to 96%.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model Higgs Physics 

References

  1. [1]
    N. Jarosik et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Veltman and F. Yndurain, Radiative corrections to WW scattering, Nucl. Phys. B 325 (1989) 1 [INSPIRE].ADSGoogle Scholar
  3. [3]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. van der Bij, The minimal non-minimal standard model, Phys. Lett. B 636 (2006) 56 [hep-ph/0603082] [INSPIRE].ADSGoogle Scholar
  9. [9]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, The simplest dark-matter model, CDMS II results and Higgs detection at LHC, Phys. Lett. B 688 (2010) 332 [arXiv:0912.4722] [INSPIRE].ADSGoogle Scholar
  10. [10]
    W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Y. Cai, X.-G. He and B. Ren, Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Bandyopadhyay, S. Chakraborty, A. Ghosal and D. Majumdar, Constraining scalar singlet dark matter with CDMS, XENON and DAMA and prediction for direct detection rates, JHEP 11 (2010) 065 [arXiv:1003.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.E. Yaguna, The singlet scalar as FIMP dark matter, JHEP 08 (2011) 060 [arXiv:1105.1654] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Abada, D. Ghaffor and S. Nasri, A two-singlet model for light cold dark matter, Phys. Rev. D 83 (2011) 095021 [arXiv:1101.0365] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y. Mambrini, Invisible Higgs and scalar dark matter, arXiv:1112.0011 [INSPIRE].
  19. [19]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for dark matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Grzadkowski and J. Wudka, Naive solution of the little hierarchy problem and its physical consequences, Acta Phys. Polon. B 40 (2009) 3007 [arXiv:0910.4829] [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Grzadkowski and J. Wudka, The uses of singlets, J. Phys. Conf. Ser. 259 (2010) 012095 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Kundu and S. Raychaudhuri, Taming the scalar mass problem with a singlet Higgs boson, Phys. Rev. D 53 (1996) 4042 [hep-ph/9410291] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C.F. Kolda and H. Murayama, The Higgs mass and new physics scales in the minimal standard model, JHEP 07 (2000) 035 [hep-ph/0003170] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Casas, J. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, arXiv:1109.0702 [INSPIRE].
  27. [27]
    B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Grzadkowski and M. Lindner, Stability of triviality mass bounds in the standard model, Phys. Lett. B 178 (1986) 81.ADSGoogle Scholar
  31. [31]
    M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].Google Scholar
  32. [32]
    M. Einhorn and D. Jones, The effective potential and quadratic divergences, Phys. Rev. D 46 (1992) 5206 [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Drozd, RGE and the fine-tuning problem, arXiv:1202.0195 [INSPIRE].
  34. [34]
    ATLAS collaboration, Combined standard model higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = 7\,TeV \) at the LHC, ATLAS-CONF-2011-157 (2011).
  35. [35]
    Particle Data Goup collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Kolb and M. Turner, The early universe, Westview Press, U.S.A. (1994).Google Scholar
  37. [37]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bertone, Particle dark matter: observations, models and searches, Cambridge University press, Cambridge U.K. (2010).MATHCrossRefGoogle Scholar
  39. [39]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  40. [40]
    J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Binoth and J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].Google Scholar
  43. [43]
    R. Akhoury, J. van der Bij and H. Wang, Interplay between perturbative and nonperturbative effects in the stealthy Higgs model, Eur. Phys. J. C 20 (2001) 497 [hep-ph/0010187] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett. B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].ADSGoogle Scholar
  46. [46]
    ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).
  47. [47]
    CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032 (2011).
  48. [48]
    J.F. Navarro, C.S. Frenk and S.D. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    B.D. Wandelt et al., Selfinteracting dark matter, astro-ph/0006344 [INSPIRE].
  52. [52]
    D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms, Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsUniversity of WarsawWarsawPoland
  2. 2.Department of PhysicsUniversity of CaliforniaRiversideUSA

Personalised recommendations