Advertisement

Electromagnetic form factor of pion from N f = 2 + 1 dynamical flavor QCD

  • Oanh Hoang NguyenEmail author
  • Ken-Ichi Ishikawa
  • Akira Ukawa
  • Naoya Ukita
Article

Abstract

We present a calculation of the electromagnetic form factor of the pion in N f = 2 + 1 flavor lattice QCD. Calculations are made on the PACS-CS gauge field configurations generated using Iwasaki gauge action and Wilson-clover quark action on a 323 × 64 lattice volume with the lattice spacing estimated as a = 0.0907(13) fm at the physical point. Measurements of the form factor are made using the technique of partially twisted boundary condition to reach small momentum transfer as well as periodic boundary condition with integer momenta. Additional improvements including random wall source techniques and a judicious choice of momenta carried by the incoming and outgoing quarks are employed for error reduction. Analyzing the form factor data for the pion mass at M π ≈ 411 MeV and 296 MeV, we find that the NNLO SU(2) chiral perturbation theory fit yields 〈r 2〉 = 0.441 ± 0.046 fm2 for the pion charge radius at the physical pion mass. Albeit the error is quite large, this is consistent with the experimental value of 0.452 ± 0.011 fm2. Below M π ≈ 300 MeV, we find that statistical fluctuations in the pion two-and three-point functions become too large to extract statistically meaningful averages on a 323 spatial volume. We carry out a sample calculation on a 644 lattice with the quark masses close to the physical point, which suggests that form factor calculations at the physical point become feasible by enlarging lattice sizes to M π L ≈ 4.

Keywords

Lattice QCD Lattice Quantum Field Theory QCD 

References

  1. [1]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    G. Martinelli and C.T. Sachrajda,, A lattice calculation of the pion’s form-factor and structure function, Nucl. Phys. B 306 (1988) 865 [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    T. Draper, R.M. Woloshyn, W. Wilcox and K.-F. Liu, The pion form-factor in lattice QCD, Nucl. Phys. B 318 (1989) 319 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    QCDSF/UKQCD collaboration, D. Brommel et al.), The pion form-factor from lattice QCD with two dynamical flavours, Eur. Phys. J. C 51 (2007) 335 [hep-lat/0608021] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    ETM collaboration, R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at Nf = 2, Phys. Rev. D 79 (2009) 074506 [arXiv:0812.4042] [SPIRES].ADSGoogle Scholar
  8. [8]
    JLQCD/TWQCD collaboration, S. Aoki et al., Pion form factors from two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 80 (2009) 034508 [arXiv:0905.2465] [SPIRES].ADSGoogle Scholar
  9. [9]
    P.A. Boyle et al., The pion’s electromagnetic form factor at small momentum transfer in full lattice QCD, JHEP 07 (2008) 112 [arXiv:0804.3971] [SPIRES].ADSGoogle Scholar
  10. [10]
    PACS-CS collaboration, S. Aoki et al., 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661] [SPIRES];ADSGoogle Scholar
  11. [11]
    P.A. Boyle, J.M. Flynn, A. Juttner, C.T. Sachrajda and J.M. Zanotti, Hadronic form factors in lattice QCD at small and vanishing momentum transfer, JHEP 05 (2007) 016 [hep-lat/0703005] [SPIRES].Google Scholar
  12. [12]
    C.T. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [SPIRES].ADSGoogle Scholar
  13. [13]
    P.F. Bedaque and J.W. Chen, Twisted valence quarks and hadron interactions on the lattice, Phys. Lett. B 616 (2005) 208 [hep-lat/0412023] [SPIRES].ADSGoogle Scholar
  14. [14]
    F.J. Jiang and B.C. Tiburzi, Flavor twisted boundary conditions, pion momentum and the pion electromagnetic form factor, Phys. Lett. B 645 (2007) 314 [hep-lat/0610103] [SPIRES].ADSGoogle Scholar
  15. [15]
    K. Bitar et al, The QCD finite temperature transition and hybrid Monte Carlo, Nucl. Phys. B 313 (1989) 348 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    H.R. Fiebig and R.M. Woloshyn, Monopoles and chiral-symmetry breaking in three-dimensional lattice QED, Phys. Rev. D 42 (1990) 3520.ADSGoogle Scholar
  17. [17]
    S.-J. Dong and K.-F. Liu, Stochastic estimation with Z(2) noise, Phys. Lett. B 328 (1994) 130 [hep-lat/9308015] [SPIRES].ADSGoogle Scholar
  18. [18]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [SPIRES].ADSGoogle Scholar
  19. [19]
    UKQCD collaboration, C. McNeile and C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506 [hep-lat/0603007] [SPIRES].ADSGoogle Scholar
  20. [20]
    O.H. N. f. P.-C. Collaboration, Pion form factor from 2 + 1 dynamical flavor lattice QCD using the O(a) improved Wilson-clover quark formalism, PoS(LAT2009)129 [arXiv:1003.3321] [SPIRES].
  21. [21]
    RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar
  22. [22]
    J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form factors of the pion to two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [SPIRES].ADSGoogle Scholar
  23. [23]
    J. Bijnens and P. Talavera, Pion and kaon electromagnetic form factors, JHEP 03 (2002) 046 [hep-ph/0203049] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Taniguchi and A. Ukawa, Perturbative calculation of improvement coefficients to O(g 2 a) for bilinear quark operators in lattice QCD, Phys. Rev. D 58 (1998) 114503 [hep-lat/9806015] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Oanh Hoang Nguyen
    • 1
    Email author
  • Ken-Ichi Ishikawa
    • 2
  • Akira Ukawa
    • 1
    • 3
  • Naoya Ukita
    • 3
  1. 1.Graduate School of Pure and Applied SciencesUniversity of TsukubaIbarakiJapan
  2. 2.Department of PhysicsHiroshima UniversityHiroshimaJapan
  3. 3.Center for Computational SciencesUniversity of TsukubaIbarakiJapan

Personalised recommendations