A new approach to anti-neutrino running in long-baseline neutrino oscillation experiments

  • Sanjib K. Agarwalla
  • Patrick Huber
  • Jonathan M. Link
  • Debabrata Mohapatra


We study the possibility to replace the anti-neutrino run of a long baseline neutrino oscillation experiment, with anti-neutrinos from muon decay at rest. The low energy of these neutrinos allows the use of inverse beta decay for detection in a Gadolinium-doped water Cerenkov detector. We show that this approach yields a factor of five times larger anti-neutrino event sample. The resulting discovery reaches in θ13, the mass hierarchy and leptonic CP violation are compared with those from a conventional superbeam experiment with combined neutrino and anti-neutrino running. We find that this approach yields a greatly improved reach for CP violation and θ13 while leaving the ability to measure the mass hierarchy intact.


Neutrino Detectors and Telescopes 


  1. [1]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [SPIRES].Google Scholar
  2. [2]
    J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 2π decay of the k 20 meson, Phys. Rev. Lett. 13 (1964) 138 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].
  4. [4]
    A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    F. Reines and C.L. Cowan, The neutrino, Nature 178 (1956) 446 [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse and A.D. McGuire, Detection of the free neutrino: a confirmation, Science 124 (1956) 103 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    LSND collaboration, C. Athanassopoulos et al., Evidence for \( {\bar{v}_\mu } \to {\bar{v}_e} \) oscillation from the LSND experiment at the Los Alamos meson physics facility, Phys. Rev. Lett. 77 (1996) 3082 [nucl-ex/9605003] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Conrad and M.H. Shaevitz, Multiple cyclotron method to search for CP-violation in the neutrino sector, Phys. Rev. Lett. 104 (2010) 141802 [arXiv:0912.4079] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    V. Barger et al., Precision physics with a wide band super neutrino beam, Phys. Rev. D 74 (2006) 073004 [hep-ph/0607177] [SPIRES].ADSGoogle Scholar
  13. [13]
    M.V. Diwan et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [SPIRES].ADSGoogle Scholar
  14. [14]
    J.F. Beacom and M.R. Vagins, GADZOOKS! Antineutrino spectroscopy with large water Cherenkov detectors, Phys. Rev. Lett. 93 (2004) 171101 [hep-ph/0309300] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    Super-Kamiokande collaboration, H. Watanabe et al., First study of neutron tagging with a water Cherenkov detector, arXiv:0811.0735 [SPIRES].
  16. [16]
    S. Dazeley, A. Bernstein, N.S. Bowden and R. Svoboda, Observation of neutrons with a Gadolinium doped water Cerenkov detector, Nucl. Instrum. Meth. A 607 (2009) 616 [arXiv:0808.0219] [SPIRES].ADSGoogle Scholar
  17. [17]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [SPIRES].ADSGoogle Scholar
  18. [18]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES, Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Sanjib K. Agarwalla
    • 1
  • Patrick Huber
    • 1
  • Jonathan M. Link
    • 1
  • Debabrata Mohapatra
    • 1
  1. 1.Department of Physics, Center for Neutrino PhysicsVirginia TechBlacksburgU.S.A.

Personalised recommendations