The phases of deuterium at extreme densities

  • Paulo F. Bedaque
  • Michael I. Buchoff
  • Aleksey Cherman


We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a “ferromagnetic” and a “nematic” one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to \( {\mathbb{Z}_2} \) vortices.


Spontaneous Symmetry Breaking Global Symmetries 


  1. [1]
    L. Berezhiani, G. Gabadadze and D. Pirtskhalava, Field theory for a deuteron quantum liquid, JHEP 04 (2010) 122 [arXiv:1003.0865] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    J. Oliva and N.W. Ashcroft, Theory of the spin-1 bosonic liquid metal: quasiparticle interactions and electrical resistivity in liquid metallic deuterium, Phys. Rev. B 30 (1984) 5140. ADSGoogle Scholar
  3. [3]
    J. Oliva and N.W. Ashcroft, Theory of the spin-1 bosonic liquid metal: equilibrium properties of liquid metallic deuterium, Phys. Rev. B 30 (1984) 1326. ADSGoogle Scholar
  4. [4]
    N.W. Ashcroft, Metallic superfluids, J. Low. Temp. Phys. 139 (2005) 711. ADSCrossRefGoogle Scholar
  5. [5]
    N.W. Ashcroft, Hydrogen at high density, J. Phys. A 36 (2003) 6137. ADSGoogle Scholar
  6. [6]
    G. Gabadadze and D. Pirtskhalava, Quantum liquid signatures in dwarf stars, JCAP 05 (2009) 017 [arXiv:0904.4267] [SPIRES].ADSGoogle Scholar
  7. [7]
    L.B. Da Silva et al., Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar), Phys. Rev. Lett. 78 (1997) 483. ADSCrossRefGoogle Scholar
  8. [8]
    V.E. Fortov et al., Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures, Phys. Rev. Lett. 99 (2007) 185001. ADSCrossRefGoogle Scholar
  9. [9]
    S. Badiei, P.U. Andersson and L. Holmlid, High-energy Coulomb explosions in ultra-dense deuterium: time-of-flight-mass spectrometry with variable energy and flight length, Int. J. Mass Spectrometry 282 (2009) 70.ADSCrossRefGoogle Scholar
  10. [10]
    P.U. Andersson and L. Holmlid, Ultra-dense deuterium: a possible nuclear fuel for Inertial Confinement Fusion (ICF), Phys. Lett. A 373 (2009) 3067. ADSGoogle Scholar
  11. [11]
    C. Wang, X.-T. He and P. Zhang, Hugoniot of shocked liquid deuterium up to 300 GPa: quantum molecular dynamic simulations, J. A ppl. Phys. 108 (2010) 044909 [arXiv:1004.1281].ADSGoogle Scholar
  12. [12]
    H.-k. Mao and R.J. Hemley, Ultrahigh-pressure transitions in solid hydrogen, Rev. Mod. Phys. 66 (1994) 671 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    G.W. Collins et al., Measurements of the equation of state of deuterium at the fluid insulator-metal transition, Science 281 (1998) 1178. ADSCrossRefGoogle Scholar
  14. [14]
    P.M. Celliers et al., Shock-induced transformation of liquid deuterium into a metallic fluid, Phys. Rev. Lett. 84 (2000) 5564. ADSCrossRefGoogle Scholar
  15. [15]
    G.V. Boriskov et al., Shock compression of liquid deuterium up to 109 GPa, Phys. Rev. B 71 (2005) 092104. ADSGoogle Scholar
  16. [16]
    D.G. Hicks et al., Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa, Phys. Rev. B 79 (2009) 014112. ADSGoogle Scholar
  17. [17]
    P.F. Bedaque, H.W. Hammer and U. van Kolck, Narrow resonances in effective field theory, Phys. Lett. B 569 (2003) 159 [nucl-th/0304007] [SPIRES].ADSGoogle Scholar
  18. [18]
    P.F. Bedaque and U. van Kolck, Effective field theory for few-nucleon systems, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339 [nucl-th/0203055] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    M.E. Peskin and D.V. Schroeder, An introduction to Quantum Field Theory, Addison-Wesley, Reading U.S.A. (1995) [SPIRES].Google Scholar
  20. [20]
    A.L. Fetter, Quantum theory of many-particle systems, McGraw-Hill, San Francisco U.S.A. (1971).Google Scholar
  21. [21]
    L. Foldy, Charged boson gas, Phys. Rev. 124 (1961) 649. ADSCrossRefGoogle Scholar
  22. [22]
    K. Brueckner, Charged boson gas at high density, Phys. Rev. 156 (1967) 204. ADSCrossRefGoogle Scholar
  23. [23]
    A.D. Dolgov, A. Lepidi and G. Piccinelli, Ferromagnetic properties of charged vector boson condensate, JCAP 08 (2010) 031 [arXiv:1005.2702] [SPIRES].ADSGoogle Scholar
  24. [24]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [SPIRES].ADSGoogle Scholar
  25. [25]
    R.A. Malfliet and J.A. Tjon, Three-nucleon calculations with realistic forces, Annals Phys. 61 (1970) 425 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    I.N. Filikhin and S.L. Yakovlev, Microscopic calculation of low-energy deuteron-deuteron scattering on the basis of the cluster-reduction method, Phys. Atom. Nucl. 63 (2000) 216. ADSCrossRefGoogle Scholar
  27. [27]
    F. Ciesielski and J. Carbonell, Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states, Phys. Rev. C 58 (1998) 58 [nucl-th/9804031] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Deltuva and A.C. Fonseca, Four-nucleon scattering: ab initio calculations in momentum space, Phys. Rev. C 75 (2007) 014005 [nucl-th/0611029] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Deltuva and A.C. Fonseca, Ab initio four-body calculation of n- 3 He, p- 3 H and d-d scattering, Phys. Rev. C 76 (2007) 021001 [nucl-th/0703066] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Deltuva, private communication, (2010).Google Scholar
  31. [31]
    T.-L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81 (1998) 742 [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    G. Gabadadze and R.A. Rosen, Vortex structure in charged condensate, JHEP 07 (2009) 093 [arXiv:0905.2444] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    G. Gabadadze and R.A. Rosen, Charged condensation, Phys. Lett. B 658 (2008) 266 [arXiv:0706.2304] [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Gabadadze and R.A. Rosen, Charged condensate and helium dwarf stars, JCAP 10 (2008) 030 [arXiv:0806.3692] [SPIRES].Google Scholar
  35. [35]
    G. Gabadadze and R.A. Rosen, Effective Lagrangian and quantum screening in charged condensate, JCAP 02 (2009) 016 [arXiv:0811.4423] [SPIRES].ADSGoogle Scholar
  36. [36]
    G. Gabadadze, Strongly coupled condensate of high density matter, Int. J. Mod. Phys. A 25 (2010) 627 [arXiv:0906.2406] [SPIRES].ADSGoogle Scholar
  37. [37]
    G. Gabadadze and R.A. Rosen, Effective field theory for quantum liquid in dwarf stars, JCAP 04 (2010) 028 [arXiv:0912.5270] [SPIRES].ADSGoogle Scholar
  38. [38]
    G. Gabadadze and R.A. Rosen, Charge screening in a charged condensate, Nucl. Phys. Proc. Suppl. 192 193 (2009) 172 [SPIRES].CrossRefGoogle Scholar
  39. [39]
    E. Smørgrav, E. Babaev, J. Smiseth and A. Sudbø, Observation of a metallic superfluidin a numerical experiment, Phys. Rev. Lett. 95 (2005) 135301. ADSCrossRefGoogle Scholar
  40. [40]
    E. Babaev, A. Sudbø and N.W. Ashcroft, Observability of a projected new state of matter: a metallic superfluid, Phys. Rev. Lett. 95 (2005) 105301. ADSCrossRefGoogle Scholar
  41. [41]
    E. Smørgrav, J. Smiseth, E. Babaev and A. Sudbø, Vortex sub-lattice melting in a two-component superconductor, Phys. Rev. Lett. 94 (2005) 096401 [cond-mat/0411031] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    J. Smiseth, E. Smørgrav, E. Babaev and A. Sudbø, Field-and temperature induced topological phase transitions in the three-dimensional N-component London superconductor, Phys. Rev. B 71 (2005) 214509 [cond-mat/0411761] [SPIRES].ADSGoogle Scholar
  43. [43]
    E.V. Herland, E. Babaev and A. Sudbø, Phase transitions in a three dimensional U(1) × U(1) lattice London superconductor, Phys. Rev. B 82 (2010) 134511 [arXiv:1006.3311].ADSGoogle Scholar
  44. [44]
    E. Babaev, A. Sudbø and N.W. Ashcroft, A superconductor to superfluid phase transition in liquid metallic hydrogen, Nature 431 (2004) 666 [cond-mat/0410408] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    E. Babaev, Knotted solitons in triplet superconductors, Phys. Rev. Lett. 88 (2002) 177002 [cond-mat/0106360] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Spontaneous rotational symmetry breaking and roton like excitations in gauged σ-model at finite density, Phys. Lett. B 581 (2004) 82 [hep-ph/0311025] [SPIRES].ADSGoogle Scholar
  47. [47]
    E.V. Gorbar, M. Hashimoto and V.A. Miransky, Gluonic phases, vector condensates and exotic hadrons in dense QCD, Phys. Rev. D 75 (2007) 085012 [hep-ph/0701211] [SPIRES].ADSGoogle Scholar
  48. [48]
    E.V. Gorbar, M. Hashimoto and V.A. Miransky, Gluonic phase in neutral two-flavor dense QCD, Phys. Lett. B 632 (2006) 305 [hep-ph/0507303] [SPIRES].ADSGoogle Scholar
  49. [49]
    E.V. Gorbar, J. Jia and V.A. Miransky, Vortices in gauge models at finite density with vector condensates, Phys. Rev. D 73 (2006) 045001 [hep-ph/0512203] [SPIRES].ADSGoogle Scholar
  50. [50]
    R.J. Hill, SU(3)/SU(2): the simplest Wess-Zumino-Witten term, Phys. Rev. D 81 (2010) 065032 [arXiv:0910.3680] [SPIRES].ADSGoogle Scholar
  51. [51]
    T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D 44 (1991) 3067 [SPIRES].
  52. [52]
    M. Hindmarsh, Existence and stability of semilocal strings, Phys. Rev. Lett. 68 (1992) 1263 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    M. Hindmarsh, Semilocal topological defects, Nucl. Phys. B 392 (1993) 461 [hep-ph/9206229] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    M. Hindmarsh, R. Holman, T.W. Kephart and T. Vachaspati, Generalized semilocal theories and higher Hopf maps, Nucl. Phys. B 404 (1993) 794 [hep-th/9209088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    J. Preskill, Semilocal defects, Phys. Rev. D 46 (1992) 4218 [hep-ph/9206216] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    A. Achucarro and T. Vachaspati, Semilocal and electroweak strings, Phys. Rept. 327 (2000) 347 [hep-ph/9904229] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    A.S. Schwarz, Field theories with no local conservation of the electric charge, Nucl. Phys. B 208 (1982) 141 [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    A.P. Balachandran, F. Lizzi and V.G.J. Rodgers, Topological symmetry breakdown in cholesterics, nematics, and 3 He, Phys. Rev. Lett. 52 (1984) 1818 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, Zero modes of non-Abelian vortices, Nucl. Phys. B 349 (1991) 414 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, The interactions and excitations of non-Abelian vortices, Phys. Rev. Lett. 64 (1990) 1632 [Erratum ibid. 65 (1990) 668] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. [61]
    U. Leonhardt and G.E. Volovik, How to create an Alice string (half-quantum vortex) in a vector Bose-Einstein condensate, Pisma Zh. Eksp. Teor. Fiz. 72 (2000) 66 [JETP Lett. 72 (2000) 46] [ cond-mat/0003428] [SPIRES].Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Paulo F. Bedaque
    • 1
  • Michael I. Buchoff
    • 1
  • Aleksey Cherman
    • 1
  1. 1.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations