Discerning secluded sector gauge structures

  • Lisa Carloni
  • Johan Rathsman
  • Torbjörn Sjöstrand


New fundamental particles, charged under new gauge groups and only weakly coupled to the standard sector, could exist at fairly low energy scales. In this article we study a selection of such models, where the secluded group either contains a softly broken U(1) or an unbroken SU(N). In the Abelian case new γ v gauge bosons can be radiated off and decay back into visible particles. In the non-Abelian case there will not only be a cascade in the hidden sector, but also hadronization into new π v and ρ v mesons that can decay back. This framework is developed to be applicable both for e + e and pp collisions, but for these first studies we concentrate on the former process type. For each Abelian and non-Abelian group we study three different scenarios for the communication between the standard sector and the secluded one. We illustrate how to distinguish the various characteristics of the models and especially study to what extent the underlying gauge structure can be determined experimentally.


Beyond Standard Model Phenomenological Models 


  1. [1]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  2. [2]
    M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [SPIRES].ADSGoogle Scholar
  3. [3]
    M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [SPIRES].
  4. [4]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].
  6. [6]
    M.J. Strassler, On the phenomenology of hidden valleys with heavy flavor, arXiv:0806.2385 [SPIRES].
  7. [7]
    J.E. Juknevich, D. Melnikov and M.J. Strassler, A pure-glue hidden valley I. States and decays, JHEP 07 (2009) 055 [arXiv:0903.0883] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  9. [9]
    K.M. Zurek, Multi-component dark matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [SPIRES].ADSGoogle Scholar
  12. [12]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV, Nature 456 (2008) 362 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].ADSGoogle Scholar
  19. [19]
    L. Carloni and T. Sjöstrand, Visible effects of invisible hidden valley radiation, JHEP 09 (2010) 105 [arXiv:1006.2911] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    L. Bergstrom, J. Edsjo and G. Zaharijas, Dark matter interpretation of recent electron and positron data, Phys. Rev. Lett. 103 (2009) 031103 [arXiv:0905.0333] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D 72 (2005) 103508 [hep-ph/0506151] [SPIRES].ADSGoogle Scholar
  22. [22]
    B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].ADSGoogle Scholar
  23. [23]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].ADSGoogle Scholar
  24. [24]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to Pythia 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  27. [27]
    A. Buckley et al., General-purpose event generators for LHC physics, arXiv:1101.2599 [SPIRES].
  28. [28]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    M. Bengtsson and T. Sjöstrand, Coherent parton showers versus matrix elements: implications of PETRA — PEP data, Phys. Lett. B 185 (1987) 435 [SPIRES].ADSGoogle Scholar
  32. [32]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    M.G. Bowler, e + e production of heavy quarks in the string model, Z. Phys. C 11 (1981) 169 [SPIRES].ADSGoogle Scholar
  35. [35]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    T. Sjöstrand, Jet fragmentation of nearby partons, Nucl. Phys. B 248 (1984) 469 [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    JADE collaboration, W. Bartel et al., A measurement of the total cross-section and a study of inclusive muon production for the process e + e hadrons in the energy range between 39.79 GeV and 46.78 GeV, Phys. Lett. B 160 (1985) 337 [SPIRES].ADSGoogle Scholar
  38. [38]
    JADE collaboration, W. Bartel et al., Experimental studies on multi-jet production in e + e annihilation at PETRA energies, Z. Phys. C 33 (1986) 23 [SPIRES].ADSGoogle Scholar
  39. [39]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  40. [40]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [SPIRES].Google Scholar
  41. [41]
    S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The principal axis of jets. An attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [SPIRES].ADSGoogle Scholar
  42. [42]
    J.D. Bjorken and S.J. Brodsky, Statistical model for electron-positron annihilation into hadrons, Phys. Rev. D1 (1970) 1416 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Lisa Carloni
    • 1
  • Johan Rathsman
    • 1
  • Torbjörn Sjöstrand
    • 1
  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations