Twist operators in N = 4 betadeformed theory

Article

Abstract

In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as reciprocity. We also find that both wrapping corrections go to zero in the large spin limit. Moreover, for twist-2 operators we studied the pole structure and compared it against leading BFKL predictions.

Keywords

AdS-CFT Correspondence Integrable Field Theories 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSMATHGoogle Scholar
  2. [2]
    N. Beisert and M. Staudacher, Long-range PSU(2, 24) Bethe ansaetze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [SPIRES].ADSMATHCrossRefGoogle Scholar
  4. [4]
    R.A. Janik and T. Lukowski, Wrapping interactions at strong coupling — The giant magnon, Phys. Rev. D 76 (2007) 126008 [arXiv:0708.2208] [SPIRES].ADSGoogle Scholar
  5. [5]
    Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Anomalous dimension with wrapping at four loops in N = 4 SYM, Nucl. Phys. B 805 (2008) 231 [arXiv:0806.2095] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V.N. Velizhanin, The four-loop anomalous dimension of the Konishi operator in N = 4 supersymmetric Yang-Mills theory, JETP Lett. 89 (2009) 6 [arXiv:0808.3832] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    Z. Bajnok, R.A. Janik and T. Lukowski, Four loop twist two, BFKL, wrapping and strings, Nucl. Phys. B 816 (2009) 376 [arXiv:0811.4448] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Z. Bajnok, A. Hegedus, R.A. Janik and T. Lukowski, Five loop Konishi from AdS/CFT, Nucl. Phys. B 827 (2010) 426 [arXiv:0906.4062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Lukowski, A. Rej and V.N. Velizhanin, Five-loop anomalous dimension of twist-two operators, Nucl. Phys. B 831 (2010) 105 [arXiv:0912.1624] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Beccaria, V. Forini, T. Lukowski and S. Zieme, Twist-three at five loops, Bethe ansatz and wrapping, JHEP 03 (2009) 129 [arXiv:0901.4864] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    V.N. Velizhanin, Six-loop anomalous dimension of twist-three operators in N =4 SYM, JHEP 11 (2010) 129 [arXiv:1003.4717] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N =4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].MathSciNetGoogle Scholar
  17. [17]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    G. Arutyunov, S. Frolov and R. Suzuki, Five-loop Konishi from the mirror TBA, JHEP 04 (2010) 069 [arXiv:1002.1711] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    J. Balog and A. Hegedus, 5-loop Konishi from linearized TBA and the XXX magnet, JHEP 06 (2010) 080 [arXiv:1002.4142] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    J. Balog and A. Hegedus, The Bajnok-Janik formula and wrapping corrections, JHEP 09 (2010) 107 [arXiv:1003.4303] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    N. Gromov and F. Levkovich-Maslyuk, Y -system and beta-deformed N =4 super-Yang-Mills, J. Phys. A 44 (2011) 015402 [arXiv:1006.5438] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the mirror TBA, JHEP 02 (2011) 025 [arXiv:1009.4118] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, Finite-size effect for four-loop Konishi of the beta-deformed N =4 SYM, Phys. Lett. B 693 (2010) 380 [arXiv:1006.2209] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, Twisted Bethe equations from a twisted S-matrix, JHEP 02 (2011) 027 [arXiv:1010.3229] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Finite-size effects in the superconformal beta-deformed N =4 SYM, JHEP 08 (2008) 057 [arXiv:0806.2103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Single impurity operators at critical wrapping order in the beta-deformed N =4 SYM, JHEP 08 (2009) 034 [arXiv:0811.4594] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M. Beccaria, F. Levkovich-Maslyuk and G. Macorini, On wrapping corrections to GKP-like operators, JHEP 03 (2011) 001 [arXiv:1012.2054] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [SPIRES].Google Scholar
  29. [29]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [SPIRES].Google Scholar
  31. [31]
    Y.L. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett. B 634 (2006) 504 [hep-ph/0511302] [SPIRES].ADSGoogle Scholar
  32. [32]
    Y.L. Dokshitzer and G. Marchesini, N =4 SUSY Yang-Mills: Three loops made simple(r), Phys. Lett. B 646 (2007) 189 [hep-th/0612248] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    B. Basso and G.P. Korchemsky, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys. B 775 (2007) 1 [hep-th/0612247] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M. Beccaria and V. Forini, Four loop reciprocity of twist two operators in N =4 SYM, JHEP 03 (2009) 111 [arXiv:0901.1256] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    V. Forini and M. Beccaria, QCD-like properties for anomalous dimensions in N =4 SYM, Theor. Math. Phys. 159 (2009) 712 [arXiv:0810.0101] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    M. Beccaria, Y.L. Dokshitzer and G. Marchesini, Twist 3 of the sl(2) sector of N =4 SYM and reciprocity respecting evolution, Phys. Lett. B 652 (2007) 194 [arXiv:0705.2639] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    M. Beccaria, Three loop anomalous dimensions of twist-3 gauge operators in N =4 SYM, JHEP 09 (2007) 023 [arXiv:0707.1574] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    M. Beccaria, Anomalous dimensions at twist-3 in the sl(2) sector of N =4 SYM, JHEP 06 (2007) 044 [arXiv:0704.3570] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Beccaria, V. Forini, A. Tirziu and A.A. Tseytlin, Structure of large spin expansion of anomalous dimensions at strong coupling, Nucl. Phys. B 812 (2009) 144 [arXiv:0809.5234] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A4 (1989) 1257 [SPIRES].ADSGoogle Scholar
  42. [42]
    G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Bern, M. Czakon, L.J . Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    B. Basso, G.P. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett. 100 (2008) 091601 [arXiv:0708.3933] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  46. [46]
    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Separation of variables for the quantum SL(2,R) spin chain, JHEP 07 (2003) 047 [hep-th/0210216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014 [hep-th/0603157] [SPIRES].Google Scholar
  48. [48]
    A.V. Kotikov, L.N. Lipatov, A. Rej, M. Staudacher and V.N. Velizhanin, Dressing and wrapping, J. Stat. Mech. (2007) P10003 [arXiv:0704.3586] [SPIRES].
  49. [49]
    J. Gunnesson, Wrapping in maximally supersymmetric and marginally deformed N =4 Yang-Mills, JHEP 04 (2009) 130 [arXiv:0902.1427] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    G. Arutyunov, M. de Leeuw, R. Suzuki and A. Torrielli, Bound state transfer matrix for AdS 5 × S 5 superstring, JHEP 10 (2009) 025 [arXiv:0906.4783] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutePotsdamGermany
  2. 2.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations