Advertisement

Quantized Nambu-Poisson manifolds in a 3-Lie algebra reduced model

  • Joshua DeBellis
  • Christian Sämann
  • Richard J. Szabo
Article

Abstract

We consider dimensional reduction of the Bagger-Lambert-Gustavsson theory to a zero-dimensional 3-Lie algebra model and construct various stable solutions corresponding to quantized Nambu-Poisson manifolds. A recently proposed Higgs mechanism reduces this model to the IKKT matrix model. We find that in the strong coupling limit, our solutions correspond to ordinary noncommutative spaces arising as stable solutions in the IKKT model with D-brane backgrounds. In particular, this happens for S 3, \( {\mathbb{R}^3} \) and five-dimensional Neveu-Schwarz Hpp-waves. We expand our model around these backgrounds and find effective noncommutative field theories with complicated interactions involving higher-derivative terms. We also describe the relation of our reduced model to a cubic supermatrix model based on an \( \mathfrak{o}\mathfrak{s}\mathfrak{p}\left( {1\left| {32} \right.} \right) \) supersymmetry algebra.

Keywords

Non-Commutative Geometry M(atrix) Theories 

References

  1. [1]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 [hep-th/0101102] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D.-s. Bak, Supersymmetric branes in pp-wave background, Phys. Rev. D 67 (2003) 045017 [hep-th/0204033] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    J.-H. Park, Supersymmetric objects in the M-theory on a pp-wave, JHEP 10 (2002) 032 [hep-th/0208161] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Sato, Covariant formulation of M-theory, Int. J. Mod. Phys. A 24 (2009) 5019 [arXiv:0902.1333] [SPIRES].ADSGoogle Scholar
  14. [14]
    K. Furuuchi and D. Tomino, Supersymmetric reduced models with a symmetry based on Filippov algebra, JHEP 05 (2009) 070 [arXiv:0902.2041] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Sato, Model of M-theory with eleven matrices, JHEP 07 (2010) 026 [arXiv:1003.4694] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    D. Tomino, Quantum corrections of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra, Nucl. Phys. B 844 (2011) 164 [arXiv:1007.3090] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J. DeBellis, C. Sämann and R.J. Szabo, Quantized Nambu-Poisson manifolds and n-Lie algebras, J. Math. Phys. 51 (2010) 122303 [arXiv:1001.3275] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    L. Smolin, M theory as a matrix extension of Chern-Simons theory, Nucl. Phys. B 591 (2000) 227 [hep-th/0002009] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    P. De Medeiros, J.M. Figueroa-O’Farrill and E. Mendez-Escobar, Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space, JHEP 07 (2008) 111 [arXiv:0805.4363] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    S.A. Cherkis and C. Sämann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808] [SPIRES].ADSGoogle Scholar
  22. [22]
    S. Cherkis, V. Dotsenko and C. Sämann, On superspace actions for multiple M2-branes, metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [arXiv:0812.3127] [SPIRES].ADSGoogle Scholar
  23. [23]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    J. Gomis, A.J. Salim and F. Passerini, Matrix theory of type IIB plane wave from membranes, JHEP 08 (2008) 002 [arXiv:0804.2186] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture, JHEP 09 (2004) 017 [hep-th/0406214] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K. Hosomichi, K.-M. Lee and S. Lee, Mass-deformed Bagger-Lambert theory and its BPS objects, Phys. Rev. D 78 (2008) 066015 [arXiv:0804.2519] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    P.-A. Nagy, Prolongations of Lie algebras and applications, arXiv:0712.1398.
  29. [29]
    J.M. Figueroa-O’Farrill and G. Papadopoulos, Plücker-type relations for orthogonal planes, J. Geom. Phys. 49 (2004) 294 [math.AG/0211170] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. [30]
    Z. Guralnik and S. Ramgoolam, On the polarization of unstable D0-branes into non-commutative odd spheres, JHEP 02 (2001) 032 [hep-th/0101001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    M. Blau, J.M. Figueroa-O’Farrill and G. Papadopoulos, Penrose limits, supergravity and brane dynamics, Class. Quant. Grav. 19 (2002) 4753 [hep-th/0202111] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [33]
    Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7 (1973) 2405 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    C.-S. Chu and D.J. Smith, Towards the quantum geometry of the M5-brane in a constant C-field from multiple membranes, JHEP 04 (2009) 097 [arXiv:0901.1847] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    C.R. Nappi and E. Witten, A WZW model based on a nonsemisimple group, Phys. Rev. Lett. 71 (1993) 3751 [hep-th/9310112] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    S. Halliday and R.J. Szabo, Noncommutative field theory on homogeneous gravitational waves, J. Phys. A 39 (2006) 5189 [hep-th/0602036] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191 [hep-th/0212262] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    T. Azuma, S. Bal, K. Nagao and J. Nishimura, Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term, JHEP 05 (2004) 005 [hep-th/0401038] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    D.N. Blaschke, E. Kronberger, R.I.P. Sedmik and M. Wohlgenannt, Gauge theories on deformed spaces, SIGMA 6 (2010) 062 [arXiv:1004.2127] [SPIRES].MathSciNetGoogle Scholar
  40. [40]
    A.B. Hammou, M. Lagraa and M.M. Sheikh-Jabbari, Coherent state induced star-product on \( \mathbb{R}_{{\uplambda }}^3 \) and the fuzzy sphere, Phys. Rev. D 66 (2002) 025025 [hep-th/0110291] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    T. Azuma, S. Iso, H. Kawai and Y. Ohwashi, Supermatrix models, Nucl. Phys. B 610 (2001) 251 [hep-th/0102168] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126. zbMATHGoogle Scholar
  43. [43]
    P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, On the Lie-algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [arXiv:0809.1086] [SPIRES].ADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Joshua DeBellis
    • 1
    • 2
  • Christian Sämann
    • 1
    • 2
  • Richard J. Szabo
    • 1
    • 2
  1. 1.Department of Mathematics and Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityEdinburghU.K.
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghU.K.

Personalised recommendations