Advertisement

Static supersymmetric black holes in AdS4 with spherical symmetry

  • Kiril HristovEmail author
  • Stefan Vandoren
Open Access
Article

Abstract

We elaborate further on the static supersymmetric AdS4 black holes found in [1], investigating thoroughly the BPS constraints for spherical symmetry in N = 2 gauged supergravity in the presence of Fayet-Iliopoulos terms. We find Killing spinors that preserve two of the original eight supercharges and investigate the conditions for genuine black holes free of naked singularities. The existence of a horizon is intimately related with the requirement that the scalars are not constant, but given in terms of harmonic functions in analogy to the attractor flow in ungauged supergravity. The black hole charges depend on the choice of the electromagnetic gauging, with only magnetic charges for purely electric gaugings. Finally we show how these black holes can be embedded in N = 8 supergravity and thus in M-theory.

Keywords

Black Holes Supergravity Models Black Holes in String Theory 

References

  1. [1]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    V.A. Kostelecky and M.J. Perry, Solitonic black holes in gauged N = 2 supergravity, Phys. Lett. B 371 (1996) 191 [hep-th/9512222] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    W.A. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Klemm and E. Zorzan, All null supersymmetric backgrounds of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, Class. Quant. Grav. 26 (2009) 145018 [arXiv:0902.4186] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    A.H. Chamseddine and W.A. Sabra, Magnetic and dyonic black holes in D = 4 gauged supergravity, Phys. Lett. B 485 (2000) 301 [hep-th/0003213] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N = 2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity, Phys. Lett. B 134 (1984) 37 [SPIRES].ADSGoogle Scholar
  17. [17]
    J.P. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, Yang-Mills theories coupled to N = 2 supergravity: Higgs and superHiggs effects in anti-de Sitter space, Phys. Lett. B 136 (1984) 354 [SPIRES].ADSGoogle Scholar
  18. [18]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].ADSGoogle Scholar
  19. [19]
    R. D’Auria, S. Ferrara and P. Fré, Special and quaternionic isometries: general couplings in N = 2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705 [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    R. Kallosh and T. Ortín, Killing spinor identities, hep-th/9306085 [SPIRES].
  23. [23]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    M. Huebscher, P. Meessen and T. Ortín, Supersymmetric solutions of N = 2 D = 4 SUGRA: the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Michelson, Compactifications of type IIB strings to four dimensions with non-trivial classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097] [SPIRES].MathSciNetCrossRefGoogle Scholar
  29. [29]
    M. de Vroome and B. de Wit, Lagrangians with electric and magnetic charges of N = 2 supersymmetric gauge theories, JHEP 08 (2007) 064 [arXiv:0707.2717] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    G. Barnich, Conserved charges in gravitational theories: contribution from scalar fields, gr-qc/0211031 [SPIRES].
  33. [33]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization-group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  35. [35]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Batrachenko, J.T. Liu, R. McNees, W.A. Sabra and W.Y. Wen, Black hole mass and Hamilton-Jacobi counterterms, JHEP 05 (2005) 034 [hep-th/0408205] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].CrossRefGoogle Scholar
  39. [39]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations