Higgsing M2 to D2 with gravity: \( \mathcal{N} = 6 \) chiral supergravity from topologically gauged ABJM theory

  • Xiaoyong Chu
  • Horatiu Nastase
  • Bengt E. W. Nilsson
  • Constantinos Papageorgakis
Article

Abstract

We present the higgsing of three-dimensional \( \mathcal{N} = 6 \) superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting \( \mathcal{N} = 6 \) supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.

Keywords

D-branes Chern-Simons Theories Supergravity Models M-Theory 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J. Bagger and N. Lambert, Comments On Multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    T. Li, Y. Liu and D. Xie, Multiple D2-Brane Action from M2-Branes, Int. J. Mod. Phys. A 24 (2009) 3039 [arXiv:0807.1183] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    Y. Pang and T. Wang, From N M2’s to N D2’s, Phys. Rev. D 78 (2008) 125007 [arXiv:0807.1444] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    X. Chu and B.E.W. Nilsson, Three-dimensional topologically gauged N = 6 ABJM type theories, JHEP 06 (2010) 057 [arXiv:0906.1655] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    U. Gran and B.E.W. Nilsson, Three-dimensional N = 8 superconformal gravity and its coupling to BLG M2-branes, JHEP 03 (2009) 074 [arXiv:0809.4478] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, More on Massive 3D Supergravity, Class. Quant. Grav. 28 (2011) 015002 [arXiv:1005.3952] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Maloney, W. Song and A. Strominger, Chiral Gravity, Log Gravity and Extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    S. Deser and J. Franklin, Is BTZ a separate superselection sector of CTMG?, Phys. Lett. B 693 (2010) 609 [arXiv:1007.2637] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    B.E.W. Nilsson, Light-cone analysis of ungauged and topologically gauged BLG theories, Class. Quant. Grav. 26 (2009) 175001 [arXiv:0811.3388] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    M. Becker, P. Bruillard and S. Downes, Chiral Supergravity, JHEP 10 (2009) 004 [arXiv:0906.4822] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Grumiller and N. Johansson, Gravity duals for logarithmic conformal field theories, J. Phys. Conf. Ser. 222 (2010) 012047 [arXiv:1001.0002] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 (1987) 75 [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    N. Lambert and P. Richmond, M2-Branes and Background Fields, JHEP 10 (2009) 084 [arXiv:0908.2896] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Y. Kim, O.-K. Kwon, H. Nakajima and D.D. Tolla, Interaction between M2-branes and Bulk Form Fields, JHEP 11 (2010) 069 [arXiv:1009.5209] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M. Schnabl and Y. Tachikawa, Classification of N = 6 superconformal theories of ABJM type, JHEP 09 (2010) 103 [arXiv:0807.1102] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J. Palmkvist, Three-algebras, triple systems and 3-graded Lie superalgebras, J. Phys. A 43 (2010) 015205 [arXiv:0905.2468] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    N. Lambert and C. Papageorgakis, Relating U(N) × U(N) → SU(N) × SU(N) Chern-Simons Membrane theories, JHEP 04 (2010) 104 [arXiv:1001.4779] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Gustavsson, Monopoles, three-algebras and ABJM theories with \( \mathbb{N} = 5,6,8 \) supersymmetry, JHEP 01 (2011) 037 [arXiv:1012.4568] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. Bagger and N. Lambert, Three-Algebras and N = 6 Chern-Simons Gauge Theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    B.E.W. Nilsson and J. Palmkvist, Superconformal M2-branes and generalized Jordan triple systems, Class. Quant. Grav. 26 (2009) 075007 [arXiv:0807.5134] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 [arXiv:0804.1256] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    S. Terashima, On M5-branes in N = 6 Membrane Action, JHEP 08 (2008) 080 [arXiv:0807.0197] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    P.K. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in Odd Dimensions, Phys. Lett. 136B (1984) 38 [SPIRES].MathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Deser and R. Jackiw, ’Selfduality’ of Topologically Massive Gauge Theories, Phys. Lett. B 139 (1984) 371 [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    P.K. Townsend, K. P ilch, and P. van Nieuwenhuizen, Selfduality in Odd Dimensions: Addendum, Phys. Lett. 137B (1984) 443.Google Scholar
  38. [38]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear K K reduction of 11d supergravity on AdS 7 × S 4 and self-duality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [SPIRES].ADSGoogle Scholar
  39. [39]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS 7 × S 4 reduction and the origin of self-duality in odd dimensions, Nucl. Phys. B 581 (2000) 179 [hep-th/9911238] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Studies of the ABJM Theory in a Formulation with Manifest SU(4) R-Symmetry, JHEP 09 (2008) 027 [arXiv:0807.0880] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, T he Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [SPIRES].ADSGoogle Scholar
  43. [43]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence, arXiv:0909.5617 [SPIRES].
  44. [44]
    J.H. Horne and E. Witten, Conformal Gravity In Three-Dimensions As A Gauge Theory, Phys. Rev. Lett. 62 (1989) 501 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  47. [47]
    J.A. Harvey and A.B. Royston, Localized Modes at a D-brane–O-plane Intersection and Heterotic Alice Strings, JHEP 04 (2008) 018 [arXiv:0709.1482] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J.A. Harvey and A.B. Royston, Gauge/Gravity duality with a chiral N = (0, 8) string defect, JHEP 08 (2008) 006 [arXiv:0804.2854] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Xiaoyong Chu
    • 1
  • Horatiu Nastase
    • 2
  • Bengt E. W. Nilsson
    • 3
  • Constantinos Papageorgakis
    • 4
  1. 1.Service de Physique Théorique, CP225Université Libre de BruxellesBruxellesBelgium
  2. 2.Instituto de Física TeóricaUNESP-Universidade Estadual PaulistaSao PauloBrazil
  3. 3.Fundamental PhysicsChalmers University of TechnologyGöteborgSweden
  4. 4.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations