RECAST — extending the impact of existing analyses

  • Kyle Cranmer
  • Itay Yavin


Searches for new physics by experimental collaborations represent a significant investment in time and resources. Often these searches are sensitive to a broader class of models than they were originally designed to test. We aim to extend the impact of existing searches through a technique we call recasting. A framework designed to facilitate the usage of this technique, called RECAST, is presented. We illustrate the issues and subtleties involved through several examples, including new results obtained from the reanalysis of archived LEP data. Website:


Hadron-Hadron Scattering 


  1. [1]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  3. [3]
    ALEPH collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    OPAL collaboration, G. Abbiendi et al., Search for neutral Higgs boson in CP-conserving and CP-violating MSSM scenarios, Eur. Phys. J. C 37 (2004) 49 [hep-ex/0406057] [SPIRES].ADSGoogle Scholar
  6. [6]
    DELPHI collaboration, J. Abdallah et al., Higgs boson searches in CP-conserving and CP-violating MSSM scenarios with the DELPHI detector, Eur. Phys. J. C 54 (2008) 1 [arXiv:0801.3586] [SPIRES].ADSGoogle Scholar
  7. [7]
    R. Dermisek and J.F. Gunion, Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and ha a decays, Phys. Rev. Lett. 95 (2005) 041801 [hep-ph/0502105] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    R. Dermisek and J.F. Gunion, The NMSSM solution to the fine-tuning problem, precision electroweak constraints and the largest LEP Higgs event excess, Phys. Rev. D 76 (2007) 095006 [arXiv:0705.4387] [SPIRES].ADSGoogle Scholar
  9. [9]
    S. Chang, P.J. Fox and N. Weiner, Naturalness and Higgs decays in the MSSM with a singlet, JHEP 08 (2006) 068 [hep-ph/0511250] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs boson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Buried Higgs, Phys. Rev. D 80 (2009) 075008 [arXiv:0906.3026] [SPIRES].ADSGoogle Scholar
  12. [12]
    B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Charming Higgs, Phys. Rev. D 81 (2010) 075017 [arXiv:0910.3210] [SPIRES].ADSGoogle Scholar
  13. [13]
    R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Dermisek and J.F. Gunion, Consistency of LEP event excesses with an ha a decay scenario and low-fine-tuning NMSSM models, Phys. Rev. D 73 (2006) 111701 [hep-ph/0510322] [SPIRES].ADSGoogle Scholar
  15. [15]
    ALEPH collaboration, S. Schael et al., Search for neutral Higgs bosons decaying into four taus at LEP2, JHEP 05 (2010) 049 [arXiv:1003.0705] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    ALEPH collaboration, Statement on the use of Aleph data for long-term analyses, 4 December 2003.Google Scholar
  17. [17]
    ALEPH collaboration, A. Heister et al., A flavor independent Higgs boson search in e + e collisions at \( \sqrt {s} \) up to 209 GeV, Phys. Lett. B 544 (2002) 25 [hep-ex/0205055] [SPIRES].ADSGoogle Scholar
  18. [18]
    DELPHI collaboration, J. Abdallah et al., Flavour independent searches for hadronically decaying neutral Higgs bosons, Eur. Phys. J. C 44 (2005) 147 [hep-ex/0510022] [SPIRES].ADSGoogle Scholar
  19. [19]
    OPAL collaboration, G. Abbiendi et al., Flavour independent h0 A0 search and two Higgs doublet model interpretation of neutral Higgs boson searches at LEP, Eur. Phys. J. C 40 (2005) 317 [hep-ex/0408097] [SPIRES].ADSGoogle Scholar
  20. [20]
    L3 collaboration, P. Achard et al., Flavor independent search for neutral Higgs bosons at LEP, Phys. Lett. B 583 (2004) 14 [hep-ex/0402003] [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Gaycken, Flavour independent search for hadronically decaying Higgs bosons, DESY-THESIS-2003-011 (2003).Google Scholar
  22. [22]
    C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)ordinary gauge mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    CDF collaboration, T. Aaltonen et al., Search for supersymmetry with gauge-mediated breaking in diphoton events with missing transverse energy at CDF II, Phys. Rev. Lett. 104 (2010) 011801 [arXiv:0910.3606] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
  29. [29]
    S. Dube, J. Glatzer, S. Somalwar, A. Sood and S. Thomas, Addressing the multi-channel inverse problem at high energy colliders: a model independent approach to the search for new physics with trileptons, arXiv:0808.1605 [SPIRES].
  30. [30]
    D0 collaboration, V.M. Abazov et al., Search for new physics using QUAERO: A general interface to DØ event data, Phys. Rev. Lett. 87 (2001) 231801 [hep-ex/0106039] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    S. Caron and B. Knuteson, QUAERO@H1: An interface to high-p T HERA event data, Eur. Phys. J. C 53 (2008) 167 [hep-ph/0612201] [SPIRES].ADSGoogle Scholar
  32. [32]
    C.J. Flacco, D. Whiteson, T.M.P. Tait and S. Bar-Shalom, Direct mass limits for chiral fourth-generation quarks in all mixing scenarios, Phys. Rev. Lett. 105 (2010) 111801 [arXiv:1005.1077] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
  34. [34]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    ATLAS collaboration, G. Aad et al., The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    K. Cranmer and I. Yavin, RECAST,

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations