Probing top charged-Higgs production using top polarization at the Large Hadron Collider

  • Katri Huitu
  • Santosh Kumar Rai
  • Kumar Rao
  • Saurabh D. Rindani
  • Pankaj Sharma
Open Access
Article

Abstract

We study single top production in association with a charged Higgs in the type II two Higgs doublet model at the Large Hadron Collider. The polarization of the top, reflected in the angular distributions of its decay products, can be a sensitive probe of new physics in its production. We present theoretically expected polarizations of the top for top charged-Higgs production, which is significantly different from that in the closely related process of tW production in the Standard Model. We then show that an azimuthal asymmetry, constructed from the decay lepton angular distribution in the laboratory frame, is a sensitive probe of top polarization and can be used to constrain parameters involved in top charged-Higgs production.

Keywords

Higgs Physics Beyond Standard Model Supersymmetric Standard Model 

References

  1. [1]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Westview Press, Boulder, CO (2000).Google Scholar
  2. [2]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1.Google Scholar
  3. [3]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kuhn and P.M. Zerwas, Production and Decay Properties of Ultraheavy Quarks, Phys. Lett. B 181 (1986) 157 [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].
  13. [13]
    W. Wagner, Top quark physics in hadron collisions, Rept. Prog. Phys. 68 (2005) 2409 [hep-ph/0507207] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\bar{t} \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    M. Beccaria, F.M. Renard and C. Verzegnassi, Electroweak supersymmetric effects on high energy unpolarized and polarized single top production at LHC, Phys. Rev. D 71 (2005) 033005 [hep-ph/0410089] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    D. Espriu and J. Manzano, A study of top polarization in single-top production at the LHC, Phys. Rev. D 66 (2002) 114009 [hep-ph/0209030] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    D. Espriu and J. Manzano, Single top production at the LHC: The Effective W approximation, hep-ph/0109059 [SPIRES].
  18. [18]
    D. Espriu and J. Manzano, Measuring effective electroweak couplings in single top production at the LHC, Phys. Rev. D 65 (2002) 073005 [hep-ph/0107112] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    G. Mahlon and S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron, Phys. Lett. B 411 (1997) 173 [hep-ph/9706304] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    T. Stelzer and S. Willenbrock, Spin correlation in top quark production at hadron colliders, Phys. Lett. B 374 (1996) 169 [hep-ph/9512292] [SPIRES].ADSGoogle Scholar
  22. [22]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark spin correlations at hadron colliders: Predictions at next-to-leading order QCD, Phys. Rev. Lett. 87 (2001) 242002 [hep-ph/0107086] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [SPIRES].ADSMATHCrossRefGoogle Scholar
  24. [24]
    M. Arai, N. Okada, K. Smolek and V. Simak, Top quark spin correlations in the Randall-Sundrum model at the CERN Large Hadron Collider, Phys. Rev. D 75 (2007) 095008 [hep-ph/0701155] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    R.M. Godbole, S.D. Rindani and R.K. Singh, Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization, JHEP 12 (2006) 021 [hep-ph/0605100] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    J. Pumplin, A. Belyaev, J. Huston, D. Stump and W.K. Tung, Parton distributions and the strong coupling: CT EQ6AB PDFs, JHEP 02 (2006) 032 [hep-ph/0512167] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M. Arai, K. Huitu, S.K. Rai and K. Rao, Single production of sleptons with polarized tops at the Large Hadron Collider, JHEP 08 (2010) 082 [arXiv:1003.4708] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M. Arai, K. Huitu, S.K. Rai and K. Rao, Single production of sleptons with polarized tops at the Large Hadron Collider, JHEP 08 (2010) 082 [arXiv:1003.4708] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    B.C. Allanach et al., Les Houches ’Physics at TeV colliders 2005’ Beyond the standard model working group: Summary report, hep-ph/0602198 [SPIRES].
  30. [30]
    R.M. Godbole, S.D. Rindani, K. Rao and R.K. Singh, Top polarization as a probe of new physics, AIP Conf. Proc. 1200 (2010) 682 [arXiv:0911.3622] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    R.M. Godbole, S.D. Rindani, K. Rao and R.K. Singh, Top polarization as a probe of new physics, AIP Conf. Proc. 1200 (2010) 682 [arXiv:0911.3622] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    S. Moretti and D.P. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b-tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    S. Lowette, J. Heyninck and P. Vanlaer, Heavy Charged MSSM Higgs Bosons in the H ±tb Decay in CMS, Report No. CMS CR 2004/031.Google Scholar
  34. [34]
    K.A. Assamagan and N. Gollub, The ATLAS discovery potential for a heavy charged Higgs boson in ggtbH ± with H ±tb, Eur. Phys. J. C 39S2 (2005) 25 [hep-ph/0406013] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    D.P. Roy, Looking for the charged Higgs boson, Mod. Phys. Lett. A 19 (2004) 1813 [hep-ph/0406102] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    D.P. Roy, The Hadronic tau decay signature of a heavy charged Higgs boson at LHC, Phys. Lett. B 459 (1999) 607 [hep-ph/9905542] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    T. Plehn, Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D 67 (2003) 014018 [hep-ph/0206121] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    S.-h. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider, Phys. Rev. D 67 (2003) 075006 [hep-ph/0112109] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    N. Kidonakis, Charged Higgs production via bgtH at the LHC, JHEP 05 (2005) 011 [hep-ph/0412422] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard and C. Verzegnassi, Associated production of charged Higgs and top at LHC: the role of the complete electroweak supersymmetric contribution, Phys. Rev. D 80 (2009) 053011 [arXiv:0908.1332] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard and C. Verzegnassi, Associated production of charged Higgs and top at LHC: the role of the complete electroweak supersymmetric contribution, Phys. Rev. D 80 (2009) 053011 [arXiv:0908.1332] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Katri Huitu
    • 1
  • Santosh Kumar Rai
    • 2
  • Kumar Rao
    • 1
  • Saurabh D. Rindani
    • 3
  • Pankaj Sharma
    • 3
  1. 1.Department of PhysicsUniversity of Helsinki, and Helsinki Institute of PhysicsHelsinkiFinland
  2. 2.Department of Physics, and Oklahoma Center for High Energy PhysicsOklahoma State UniversityStillwaterU.S.A
  3. 3.Theoretical Physics DivisionPhysical Research LaboratoryNavrangpuraIndia

Personalised recommendations