Advertisement

Automating the Powheg method in Sherpa

  • Stefan Höche
  • Frank Krauss
  • Marek Schönherr
  • Frank Siegert
Open Access
Article

Abstract

A new implementation of the Powheg method [1, 2] into the Monte-Carlo event generator Sherpa [3, 4] is presented, focusing on processes with a simple colour structure. Results for a variety of reactions, namely e + e → hadrons, deep-inelastic lepton-nucleon scattering, hadroproduction of single vector bosons and of vector boson pairs as well as the production of Higgs bosons in gluon fusion serve as test cases for the successful realisation. The algorithm is highly automated such that for other processes with simple colour topology only virtual matrix elements need to be provided.

Keywords

QCD Phenomenology 

References

  1. [1]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the Powheg method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    T. Gleisberg et al., Sherpa 1.α, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    T. Gleisberg et al., Event generation with Sherpa 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to Pythia 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar
  7. [7]
    G. Corcella et al., Herwig 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    M. Bähr et al., Herwig ++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    J. Andre and T. Sjöstrand, A matching of matrix elements and parton showers, Phys. Rev. D 57 (1998) 5767 [hep-ph/9708390] [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline b + n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with Herwig and Pythia, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    S. Höche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
  20. [20]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in Mc@Nlo, JHEP 03 (2006) 092 [hep-ph/0512250] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    C. Weydert et al., Charged Higgs boson production in association with a top quark in Mc@Nlo, Eur. Phys. J. C 67 (2010) 617 [arXiv:0912.3430] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with Pythia using Mc@Nlo, JHEP 04 (2010) 110 [arXiv:1002.4293] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in Powheg, JHEP 04 (2009) 002 [arXiv:0812.0578] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in PPowheg : s-and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in Powheg, JHEP 02 (2010) 037 [arXiv:0911.5299] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in Powheg, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    O. Latunde-Dada, Applying the Powheg method to top pair production and decays at the ILC, Eur. Phys. J. C 58 (2008) 543 [arXiv:0806.4560] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A. Papaefstathiou and O. Latunde-Dada, NLO production of W-prime bosons at hadron colliders using the Mc@Nlo and Powheg methods, JHEP 07 (2009) 044 [arXiv:0901.3685] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    G. Corcella and M.H. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [SPIRES].ADSGoogle Scholar
  41. [41]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [SPIRES].ADSGoogle Scholar
  42. [42]
    G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the Powheg BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    S. Höche, F. Krauss, M. Sch¨onherr and F. Siegert, NLO matrix elements and truncated showers, arXiv:1009.1127 [SPIRES].
  48. [48]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  51. [51]
    C.F. Berger et al., Precise predictions for W +3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    D. Maître, private communication.Google Scholar
  53. [53]
    J. Campbell and R.K. Ellis, Mcfm — Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.
  54. [54]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [SPIRES].Google Scholar
  57. [57]
    L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [Yad. Fiz. 20 (1974) 181] [SPIRES].Google Scholar
  58. [58]
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [SPIRES].ADSGoogle Scholar
  59. [59]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [SPIRES].ADSGoogle Scholar
  61. [61]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    B. Andersson, G. Gustafson and L. Lönnblad, Gluon splitting in the color dipole cascades, Nucl. Phys. B 339 (1990) 393 [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].ADSGoogle Scholar
  64. [64]
    D.A. Kosower, Antenna factorization in strongly-ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [SPIRES].ADSGoogle Scholar
  65. [65]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [SPIRES].ADSGoogle Scholar
  69. [69]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].ADSGoogle Scholar
  70. [70]
    R.D. Field, A pplications of perturbative QCD, Front. Phys. 77 (1989) 1, Addison-Wesley, Redwood City U.S.A. (1989) [SPIRES].
  71. [71]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, first edition, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [SPIRES].
  72. [72]
    S. Plätzer and S. Gieseke, Coherent parton showers with local recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [SPIRES].ADSGoogle Scholar
  74. [74]
    M. Schönherr and F. Krauss, Soft photon radiation in particle decays in Sherpa, JHEP 12 (2008) 018 [arXiv:0810.5071] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    F. Krauss, R. Kuhn and G. Soff, Amegic+ + 1.0: A Matrix Element Generator In C++, JHEP 02 (2002) 044 [hep-ph/0109036] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    T. Gleisberg and S. Höche, Comix , a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [SPIRES].ADSMATHCrossRefGoogle Scholar
  78. [78]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\overline p \to {{{{W^\pm }}} \left/ {{{Z^0} + }} \right.} \) jets, Nucl. Phys. B 262 (1985) 235 [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    A. Ballestrero and E. Maina, A new method for helicity calculations, Phys. Lett. B 350 (1995) 225 [hep-ph/9403244] [SPIRES].ADSGoogle Scholar
  81. [81]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [SPIRES].ADSMATHCrossRefGoogle Scholar
  83. [83]
    G.P. Lepage, Vegas— an adaptive multi-dimensional integration program, CLNS-80/447, Cornell University, Ithaca U.S.A. [SPIRES].
  84. [84]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [SPIRES].
  86. [86]
    T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [SPIRES].ADSCrossRefGoogle Scholar
  87. [87]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  88. [88]
    B.M. Waugh et al., HZTool and Rivet: toolkit and framework for the comparison of simulated final states and data at colliders, hep-ph/0605034 [SPIRES].
  89. [89]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].
  90. [90]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    B. Andersson, The Lund model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1 [SPIRES].Google Scholar
  92. [92]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  93. [93]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  94. [94]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the HWW → ℓνℓν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [SPIRES].ADSCrossRefGoogle Scholar
  96. [96]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].ADSCrossRefGoogle Scholar
  97. [97]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  100. [100]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for \( \mathcal{O}\left( {{\alpha_s}} \right) \) production of W + W , W ± Z, ZZ, W ±γ, or Z γ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    H1 collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross sections in deep-inelastic positron proton collisions at \( \sqrt {s} \) of 300 GeV, Eur. Phys. J. C 19 (2001) 289 [hep-ex/0010054] [SPIRES].ADSGoogle Scholar
  102. [102]
    H1 collaboration, C. Adloff et al., Three Jet production in deep inelastic scattering at HERA, Phys. Lett. B 515 (2001) 17 [hep-ex/0106078] [SPIRES].ADSGoogle Scholar
  103. [103]
    DØ collaboration, B. Abbott et al., Differential cross-section for W boson production as a function of transverse momentum in \( p\overline p \) collisions at \( \sqrt {s} = 1.8\,TeV \), Phys. Lett. B 513 (2001) 292 [hep-ex/0010026] [SPIRES].ADSGoogle Scholar
  104. [104]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [SPIRES].ADSGoogle Scholar
  105. [105]
    DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z/γμ + μ transverse momentum distribution in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [SPIRES].ADSGoogle Scholar
  106. [106]
    DØ collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\overline p \to {{Z} \left/ {{\gamma *}} \right.} \to {e^{+} }{e^{-} } + X \) events produced at s of 1.96 TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [SPIRES].ADSGoogle Scholar
  107. [107]
    DØ collaboration, V.M. Abazov et al., Measurement of Z/γ+ j et + X angular distributions in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 682 (2010) 370 [arXiv:0907.4286] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Stefan Höche
    • 1
  • Frank Krauss
    • 2
    • 3
  • Marek Schönherr
    • 4
  • Frank Siegert
    • 2
    • 5
  1. 1.Institut für Theoretische PhysikUniversität ZürichZurichSwitzerland
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  3. 3.PH-TH, CERNGeneva 23Switzerland
  4. 4.Institut für Kern-und TeilchenphysikTechnische Universität DresdenDresdenGermany
  5. 5.Department of Physics & AstronomyUniversity College LondonLondonU.K.

Personalised recommendations