Differential geometry with a projection: application to double field theory

Article

Abstract

In recent development of double field theory, as for the description of the massless sector of closed strings, the spacetime dimension is formally doubled, i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D, D) rotation. In this paper, we conceive a differential geometry characterized by a O(D, D) symmetric projection, as the underlying mathematical structure of double field theory. We introduce a differential operator compatible with the projection, which, contracted with the projection, can be covariantized and may replace the ordinary derivatives in the generalized Lie derivative that generates the gauge symmetry of double field theory. We construct various gauge covariant tensors which include a scalar and a tensor carrying two O(D, D) vector indices.

Keywords

String Duality Bosonic Strings 

References

  1. [1]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge U.K. (2007), p. 739.MATHGoogle Scholar
  2. [2]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    T.H. Buscher, Quantum corrections and extended supersymmetry in new sigma models, Phys. Lett. B 159 (1985) 127 [SPIRES].ADSGoogle Scholar
  4. [4]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett. B 201 (1988) 466 [SPIRES].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Giveon, E. Rabinovici and G. Veneziano, Duality in string background space, Nucl. Phys. B 322 (1989) 167 [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].ADSMathSciNetGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  10. [10]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].ADSGoogle Scholar
  11. [11]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford, U.K. (2003), math/0401221.
  19. [19]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs.SC/0608005].ADSMATHCrossRefGoogle Scholar
  20. [20]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [SPIRES].
  21. [21]
    E. Bergshoeff, I. Entrop and R. Kallosh, Exact duality in string effective action, Phys. Rev. D 49 (1994) 6663 [hep-th/9401025] [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    E. Bergshoeff, C.M. Hull and T. Ort´ın, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    H. Godazgar and M.J. Perry, Real fermionic symmetry in type-II supergravity, JHEP 01 (2011) 032 [arXiv:1008.3128] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    P. West, E11, generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [SPIRES].ADSGoogle Scholar
  27. [27]
    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].ADSMathSciNetGoogle Scholar
  29. [29]
    D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    R.R. Metsaev and A.A. Tseytlin, Order α(two loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys. B 293 (1987) 385 [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    K.A. Meissner, Symmetries of higher-order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [SPIRES].ADSMathSciNetGoogle Scholar
  32. [32]
    M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M.B. Green, S.D. Miller, J.G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, arXiv:1004.0163 [SPIRES].
  34. [34]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, arXiv:1008.1763 [SPIRES].
  35. [35]
    M. Dine, P.Y. Huet and N. Seiberg, Large and small radius in string theory, Nucl. Phys. B 322 (1989) 301 [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [SPIRES].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Quantum SpacetimeSogang UniversitySeoulKorea
  2. 2.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations