Advertisement

Towards strange metallic holography

  • Sean A. Hartnoll
  • Joseph Polchinski
  • Eva Silverstein
  • David Tong
Open Access
Article

Abstract

We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group ow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z ≥ 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

Keywords

AdS-CFT Correspondence Space-Time Symmetries 

References

  1. [1]
    G.R. Stewart, Non-Fermi-liquid behavior in d- and f-electron metals, Rev. Mod. Phys. 73 (2001) 797 [SPIRES.CrossRefADSGoogle Scholar
  2. [2]
    R.A. Cooper et al., Anomalous criticality in the electrical resistivity of La 2-x Sr x CuO 4 , Science 323 (2009) 603.CrossRefADSGoogle Scholar
  3. [3]
    N.E. Hussey, Phenomenology of the normal state in-plane transport properties of high-T c cuprates, J. Phys. Cond. Matt. 20 (2008) 123201 [arXiv:0804.2984].CrossRefADSGoogle Scholar
  4. [4]
    S. Martin, A.T. Fiory, R.M. Fleming, L.F. Schneemeyer and J.V. Waszczak, Normal state transport properties of Bi 2+x Sr 2-y CuO 6±δ crystals, Phys. Rev. B 41 (1990) 846.ADSGoogle Scholar
  5. [5]
    D. van de Marel et al., Quantum critical behaviour in a high-tc superconductor, Nature 425 (2003) 271 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A.W. Tyler and A.P. Mackenzie, Hall effect of single layer, tetragonal Tl 2 Ba 2 CuO 6+δ near optimal doping, Physica C 282-287 (1997) 1185.Google Scholar
  7. [7]
    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].ADSGoogle Scholar
  8. [8]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  9. [9]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  11. [11]
    T. Faulkner et al., work in progress.Google Scholar
  12. [12]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    C.P. Herzog, Lectures on Holographic Superuidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  15. [15]
    J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  16. [16]
    S.A. Hartnoll, Quantum Critical Dynamics from Black Holes, arXiv:0909.3553 [SPIRES].
  17. [17]
    A. Karch and A. O'Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M. Kulaxizi and A. Parnachev, Holographic Responses of Fermion Matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    M. Kulaxizi and A. Parnachev, Comments on Fermi Liquid from Holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Karch, M. Kulaxizi and A. Parnachev, Notes on Properties of Holographic Matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [SPIRES].ADSGoogle Scholar
  24. [24]
    Y. Ando, A.N. Lavrov, S. Komiya, K. Segawa and X.F. Sun, Mobility of the Doped Holes and the Antiferromagnetic Correlations in Underdoped High-T c Cuprates, Phys. Rev. Lett. 87 (2001) 017001-1.CrossRefADSGoogle Scholar
  25. [25]
    P. Phillips, Breakdown of One-Paramater Scaling in Quantum Critical Scenarios for the High-Temperature Copper-oxide Superconductors, Phys. Rev. Lett. 95 (2005) 107002.CrossRefADSGoogle Scholar
  26. [26]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].ADSGoogle Scholar
  29. [29]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].ADSGoogle Scholar
  30. [30]
    S.W. Hawking and S.F. Ross, Duality between Electric and Magnetic Black Holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    C.P. Burgess, Open string instability in background electric fields, Nucl. Phys. B 294 (1987) 427 [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    V.V. Nesterenko, The dynamics of open strings in a background electromagnetic field, Int. J. Mod. Phys. A 4 (1989) 2627 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    R. Gopakumar, J.M. Maldacena, S. Minwalla and A. Strominger, S-duality and noncommutative gauge theory, JHEP 06 (2000) 036 [hep-th/0005048] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    N. Seiberg, L. Susskind and N. Toumbas, Strings in background electric field, space/time noncommutativity and a new noncritical string theory, JHEP 06 (2000) 021 [hep-th/0005040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [SPIRES].ADSGoogle Scholar
  37. [37]
    P. Hořava and C.M. Melby-Thompson, Anisotropic Conformal Infinity, arXiv:0909.3841 [SPIRES].
  38. [38]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].
  40. [40]
    E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].
  41. [41]
    A. O'Bannon, Hall Conductivity of Flavor Fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [SPIRES].ADSGoogle Scholar
  42. [42]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].ADSGoogle Scholar
  43. [43]
    S.A. Hartnoll and C.P. Herzog, Ohm's Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge U.K. (2001).Google Scholar
  46. [46]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    D.N. Basov and T. Timusk, Electrodynamics of high- Tc superconductors, Rev. Mod. Phys. 77 (2005) 721 [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].ADSGoogle Scholar
  50. [50]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [SPIRES].
  52. [52]
    S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].CrossRefADSzbMATHGoogle Scholar
  53. [53]
    A. Karch and E. Katz, Adding avor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    A. Karch and A. O'Bannon, Holographic Thermodynamics at Finite Baryon Density: Some Exact Results, JHEP 11 (2007) 074 [arXiv:0709.0570] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  60. [60]
    T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  61. [61]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].ADSGoogle Scholar
  62. [62]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].
  63. [63]
    W. Li, T. Nishioka and T. Takayanagi, Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].ADSGoogle Scholar
  64. [64]
    O. Aharony, S. Kachru, X. Liu and M. Mulligan, in progress.Google Scholar
  65. [65]
    J. Polchinski and E. Silverstein, Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT, arXiv:0908.0756 [SPIRES].
  66. [66]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [SPIRES].ADSGoogle Scholar
  68. [68]
    S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic Superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES].
  69. [69]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  70. [70]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [SPIRES].
  73. [73]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    J.L. Davis, M. Gutperle, P. Kraus and I. Sachs, Stringy NJLS and Gross-Neveu models at finite density and temperature, JHEP 10 (2007) 049 [arXiv:0708.0589] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  75. [75]
    M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold Nuclear Matter In Holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  77. [77]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038] [SPIRES].MathSciNetGoogle Scholar
  78. [78]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [SPIRES].CrossRefGoogle Scholar
  79. [79]
    D. Fabbri et al., 3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS 4/CFT 3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  80. [80]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane Theories for Generic Toric Singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  81. [81]
    S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  82. [82]
    J. de Boer, K. Papadodimas and E. Verlinde, Holographic Neutron Stars, arXiv:0907.2695 [SPIRES].
  83. [83]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].ADSGoogle Scholar
  84. [84]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [SPIRES].ADSGoogle Scholar
  85. [85]
    B. McInnes, Instability of Near-Extremal Black Holes Dual to Strongly Coupled Field Theories on Flat Spacetime, arXiv:0905.1180 [SPIRES].
  86. [86]
    G. Horowitz and M. Rangamani, work in progress.Google Scholar
  87. [87]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) 531 p. [SPIRES].Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Sean A. Hartnoll
    • 1
    • 2
  • Joseph Polchinski
    • 2
  • Eva Silverstein
    • 2
  • David Tong
    • 2
    • 3
  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  2. 2.Kavli Institute for Theoretical Physics and Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations