Compact F-theory GUTs with U(1)PQ

  • Joseph Marsano
  • Natalia Saulina
  • Sakura Schäfer-Nameki


We construct semi-local and global realizations of SU(5) GUTs in F-theory that utilize a U(1)PQ symmetry to protect against dimension four proton decay. Symmetries of this type, which assign charges to H u and H d that forbid a tree level μ term, play an important role in scenarios for neutrino physics and gauge mediation that have been proposed in local F-theory model building. As demonstrated in [1], the presence of such a symmetry implies the existence of non-GUT exotics in the spectrum, when hypercharge flux is used to break the GUT group and to give rise to doublet-triplet splitting. These exotics are of precisely the right type to solve the unification problem in such F-theory models and might also comprise a non-standard messenger sector for gauge mediation. We present a detailed description of models with U(1)PQ in the semi-local regime, which does not depend on details of any specific Calabi-Yau four-fold, and then specialize to the geometry of [2] to construct three-generation examples with the minimal allowed number of non-GUT exotics. Among these, we find a handful of models in which the D3-tadpole constraint can be satisfied without requiring the introduction of anti-D3-branes, though this analysis does not incorporate contributions from additional fluxes that will ultimately be needed for moduli stabilization. Finally, because SU(5) singlets that carry U(1)PQ charge may serve as candidate right-handed neutrinos or can be used to lift the exotics, we study their origin in compact models and motivate a conjecture for how to count their zero modes in a semi-local setting.


Strings and branes phenomenology 


  1. [1]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].
  4. [4]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].
  7. [7]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Gauge mediation in F-theory GUT models, Phys. Rev. D 80 (2009) 046006 [arXiv:0808.1571] [SPIRES].ADSGoogle Scholar
  8. [8]
    J.J. Heckman and C. Vafa, F-theory, GUTs and the weak scale, JHEP 09 (2009) 079 [arXiv:0809.1098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, arXiv:0811.2417 [SPIRES].
  11. [11]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    J.J. Heckman, A. Tavanfar and C. Vafa, The point of E 8 in F-theory GUTs, arXiv:0906.0581 [SPIRES].
  14. [14]
    J.J. Heckman and C. Vafa, CP violation and F-theory GUTs, arXiv:0904.3101 [SPIRES].
  15. [15]
    A. Font and L.E. Ibáñez, Matter wave functions and Yukawa couplings in F-theory grand unification, JHEP 09 (2009) 036 [arXiv:0907.4895] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    J.P. Conlon and E. Palti, Aspects of flavour and supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [SPIRES].
  18. [18]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, arXiv:0910.2762 [SPIRES].
  19. [19]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, arXiv:0910.5496 [SPIRES].
  20. [20]
    R. Tatar, Y. Tsuchiya and T. Watari, Right-handed neutrinos in F-theory compactifications, Nucl. Phys. B 823 (2009) 1 [arXiv:0905.2289] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. Andreas and G. Curio, From local to global in F-theory model building, arXiv:0902.4143 [SPIRES].
  22. [22]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [SPIRES].
  23. [23]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [SPIRES].ADSGoogle Scholar
  25. [25]
    R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    J.J. Heckman, J. Marsano, N. Saulina, S. Schäfer-Nameki and C. Vafa, Instantons and SUSY breaking in F-theory, arXiv:0808.1286 [SPIRES].
  28. [28]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, An instanton toolbox for F-theory model building, JHEP 01 (2010) 128 [arXiv:0808.2450] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic F-theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    G.F. Giudice and R. Rattazzi, Extracting supersymmetry-breaking effects from wave-function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Joseph Marsano
    • 1
    • 4
  • Natalia Saulina
    • 2
    • 4
  • Sakura Schäfer-Nameki
    • 3
    • 4
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  4. 4.California Institute of TechnologyPasadenaU.S.A.

Personalised recommendations