Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders

  • Andreas Papaefstathiou
  • Jennifer M. Smillie
  • Bryan R. Webber


We compute the resummed hadronic transverse energy (E T ) distribution due to initial-state QCD radiation in vector boson and Higgs boson production at hadron colliders. The resummed exponent, parton distributions and coefficient functions are treated consistently to next-to-leading order. The results are matched to fixed-order calculations at large E T and compared with parton-shower Monte Carlo predictions at Tevatron and LHC energies.


QCD Phenomenology 


  1. [1]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [SPIRES].ADSGoogle Scholar
  2. [2]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, arXiv:0911.4135 [SPIRES].
  4. [4]
    Y. L. Dokshitzer, D. Diakonov and S.I. Troian, Hard Processes In Quantum Chromodynamics, Phys. Rep. 58 (1980) 269.CrossRefADSGoogle Scholar
  5. [5]
    G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    G. Curci, M. Greco and Y. Srivastava, QCD jets from coherent states, Nucl. Phys. B 159 (1979) 451 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Inelastic Distributions and Color Structure in Perturbative QCD, Nucl. Phys. B 163 (1980) 477 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    J. Kodaira and L. Trentadue, Summing Soft Emission In QCD, Phys. Lett. B 112 (1982) 66.ADSGoogle Scholar
  9. [9]
    J. Kodaira and L. Trentadue, Single Logarithm Effects in electron-Positron Annihilation, Phys. Lett. B 123 (1983) 335 [SPIRES].ADSGoogle Scholar
  10. [10]
    J.C. Collins, D.E. Soper and G. Sterman, Transverse Momentum Distribution In Drell-Yan Pair And W And Z Boson Production, Nucl. Phys. B 250 (1985) 199 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    F. Halzen, A.D. Martin, D.M. Scott and M.P. Tuite, The transverse hadronic energy accompanying weak bosons, Zeit. Phys. C 14 (1982) 351 [SPIRES].ADSGoogle Scholar
  12. [12]
    C.T.H. Davies and B.R. Webber, Transverse hadronic energy emission in hard scattering processes, Z. Phys. C 24 (1984) 133 [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Altarelli, G. Martinelli and F. Rapuano, The transverse hadronic energy in W and Z 0 production, Z. Phys. C 32 (1986) 369 [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
  16. [16]
  17. [17]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    M. Bahr et al., Herwig++ 2.3 Release Note, arXiv:0812.0529.
  19. [19]
  20. [20]
    S. Catani, D. de Florian and M. Grazzini, Universality of non-leading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    C.T.H. Davies and W.J. Stirling, Nonleading Corrections to the Drell-Yan Cross-Section at Small Transverse Momentum, Nucl. Phys. B 244 (1984) 337 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    C. Balázs, J.-w. Qiu and C.P. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons, Phys. Lett. B 355 (1995) 548 [hep-ph/9505203] [SPIRES].ADSGoogle Scholar
  23. [23]
    D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Catani, E. D’Emilio and L. Trentadue, The Gluon Form-Factor To Higher Orders: Gluon Gluon Annihilation At Small Q-Transverse, Phys. Lett. B 211 (1988) 335.ADSGoogle Scholar
  26. [26]
    R.P. Kauffman, Higher order corrections to Higgs boson p T, Phys. Rev. D 45 (1992) 1512 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [SPIRES].ADSGoogle Scholar
  29. [29]
  30. [30]
    A. Sherstnev and R.S. Thorne, Parton Distributions for LO Generators, Eur. Phys. J. C 55 (2008) 553 [arXiv:0711.2473] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    A. Sherstnev and R.S. Thorne, Different PDF approximations useful for LO Monte Carlo generators, arXiv:0807.2132.

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Andreas Papaefstathiou
    • 1
  • Jennifer M. Smillie
    • 2
  • Bryan R. Webber
    • 1
  1. 1.Cavendish LaboratoryCambridgeU.K.
  2. 2.Department of Physics and AstronomyUniversity College LondonLondonU.K.

Personalised recommendations