Advertisement

Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0

  • M. C. Gonzalez-Garcia
  • Michele MaltoniEmail author
  • Jordi Salvado
Article

Abstract

We present an up-to-date global analysis of solar, atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino oscillations. We discuss in detail the statistical significance of the observed “hint” of non-zero θ 13 in the solar sector at the light of the latest experimental advances, such as the Borexino spectral data, the lower value of Gallium rate recently measured in SAGE, and the low energy threshold analysis of the combined SNO phase I and phase II. We also study the robustness of the results under changes of the inputs such as the choice of solar model fluxes and a possible modification of the Gallium capture cross-section as proposed by SAGE. In the atmospheric sector we focus on the latest results for ν e appearance from MINOS and on the recent Super-Kamiokande results from the combined phases I, II and III, and we discuss their impact on the determination of θ 13. Finally, we combine all the data into a global analysis and determine the presently allowed ranges of masses and mixing.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

References

  1. [1]
    B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [SPIRES].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [SPIRES].ADSGoogle Scholar
  3. [3]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].zbMATHCrossRefADSGoogle Scholar
  5. [5]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [SPIRES].ADSGoogle Scholar
  7. [7]
    P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter, Nucl. Phys. B 282 (1987) 589 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Neutrino masses and mixing: 2008 status, Nucl. Phys. Proc. Suppl. 188 (2009) 27 [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ 13, PoS IDM2008 (2008) 072 [arXiv:0812.3161] [SPIRES].Google Scholar
  11. [11]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, SNO, KamLAND and neutrino oscillations: θ 13, arXiv:0905.3549 [SPIRES].
  13. [13]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [1001.2731] [SPIRES].ADSGoogle Scholar
  15. [15]
    R.L. Hahn, Radiochemical solar neutrino experiments, ‘successful and otherwise’, J. Phys. Conf. Ser. 136 (2008) 022003.CrossRefADSGoogle Scholar
  16. [16]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].ADSGoogle Scholar
  17. [17]
    Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [SPIRES].ADSGoogle Scholar
  18. [18]
    SNO collaboration, B. Aharmim et al., Measurement of the nu/e and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].ADSGoogle Scholar
  20. [20]
    SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    SNO collaboration, B. Aharmim et al., Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory, arXiv:0910.2984 [SPIRES].
  22. [22]
    The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    T.B. Collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, arXiv:0808.2868 [SPIRES].
  24. [24]
    J.N. Bahcall, Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [SPIRES].ADSGoogle Scholar
  25. [25]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Direct determination of the solar neutrino fluxes from solar neutrino data, arXiv:0910.4584 [SPIRES].
  26. [26]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].ADSGoogle Scholar
  27. [27]
    S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [SPIRES].Google Scholar
  28. [28]
    M. Asplund, N. Grevesse and J. Sauval, The solar chemical composition, ASP Conf. Ser. 336 (2005) 25.ADSGoogle Scholar
  29. [29]
    M. Asplund, N. Grevesse, A.J. Sauval and P. Scott, The chemical composition of the Sun, Ann. Rev. Astron. Astrophys. 47 (2009) 481 [arXiv:0909.0948] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    N. Grevesse and A.J. Sauval, Standard Solar Composition, Space Sci. Rev. 85 (1998) 161.CrossRefADSGoogle Scholar
  31. [31]
    J.N. Bahcall, S. Basu, M. Pinsonneault and A.M. Serenelli, Helioseismological Implications of Recent Solar Abundance Determinations, Astrophys. J. 618 (2005) 1049 [astro-ph/0407060] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    W.J. Chaplin et al., Solar heavy element abundance: constraints from frequency separation ratios of low-degree p modes, Astrophys. J. 670 (2007) 872 [arXiv:0705.3154] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    S. Basu et al., Solar abundances and helioseismology: fine structure spacings and separation ratios of low-degree p modes, Astrophys. J. 655 (2007) 660 [astro-ph/0610052] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology and neutrino fluxes, Astrophys. J. 621 (2005) L85 [astro-ph/0412440] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New Solar Composition: The Problem With Solar Models Revisited, arXiv:0909.2668 [SPIRES].
  36. [36]
    S. Goswami and A.Y. Smirnov, Solar neutrinos and 1-3 leptonic mixing, Phys. Rev. D 72 (2005) 053011 [hep-ph/0411359] [SPIRES].ADSGoogle Scholar
  37. [37]
    KamLAND collaboration, I. Shimizu, KamLAND (anti-neutrino status), J. Phys. Conf. Ser. 120 (2008) 052022.CrossRefADSGoogle Scholar
  38. [38]
    A.B. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of theta13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [SPIRES].ADSGoogle Scholar
  39. [39]
    Super-Kamiokande collaboration, Y. Ashie et al., A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [SPIRES].ADSGoogle Scholar
  40. [40]
    P. Litchfield, Review of atmospheric υ data, talk given at the XXII International Conference on Neutrino Physics, Santa Fe, New Mexico, June 13–19, 2006.Google Scholar
  41. [41]
    Kamiokande collaboration, S.R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, arXiv:1002.3471 [SPIRES].
  42. [42]
    K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].ADSGoogle Scholar
  43. [43]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    MINOS collaboration, P. Adamson et al., Search for muon-neutrino to electron-neutrino transitions in MINOS, Phys. Rev. Lett. 103 (2009) 261802 [arXiv:0909.4996] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    CHOOZ collaboration, M. Apollonio et al., Limits on Neutrino Oscillations from the CHOOZ Experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • M. C. Gonzalez-Garcia
    • 1
    • 2
  • Michele Maltoni
    • 3
    Email author
  • Jordi Salvado
    • 4
  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookU.S.A.
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Instituto de Física Teórica UAM/CSIC, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  4. 4.Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations