Cosmology of F-theory GUTs

  • Jonathan J. Heckman
  • Alireza Tavanfar
  • Cumrun Vafa
Article

Abstract

In this paper we study the interplay between the recently proposed F-theory GUTs and cosmology. Despite the fact that the parameter range for F-theory GUT models is very narrow, we find that F-theory GUTs beautifully satisfy most cosmological constraints without any further restrictions. The viability of the scenario hinges on the interplay between various components of the axion supermultiplet, which in F-theory GUTs is also responsible for breaking supersymmetry. In these models, the gravitino is the LSP and develops a mass by eating the axino mode. The radial component of the axion supermultiplet known as the saxion typically begins to oscillate in the early Universe, eventually coming to dominate the energy density. Its decay reheats the Universe to a temperature of ∼1GeV, igniting BBN and diluting all thermal relics such as the gravitino by a factor of ∼10−4 − 10−5 such that gravitinos contribute a sizable component of the dark matter. In certain cases, non-thermally produced relics such as the axion, or gravitinos generated from the decay of the saxion can also contribute to the abundance of dark matter. Remarkably enough, this cosmological scenario turns out to be independent of the initial reheating temperature of the Universe. This is due to the fact that the initial oscillation temperature of the saxion coincides with the freeze out temperature for gravitinos in F-theory GUTs. We also find that saxion dilution is compatible with generating the desired baryon asymmetry from standard leptogenesis. Finally, the gravitino mass range in F-theory GUTs is 10 − 100MeV, which interestingly coincides with the window of values required for the decay of the NLSP to solve the problem of 7Li over-production.

Keywords

Cosmology of Theories beyond the SM F-Theory 

References

  1. [1]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J.J. Heckman and C. Vafa, F-theory, GUTs and the weak scale, JHEP 09 (2009) 079 [arXiv:0809.1098] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [SPIRES].
  5. [5]
    J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, arXiv:0811.2417 [SPIRES].
  6. [6]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].
  7. [7]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic-F theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    L. Aparicio, D.G. Cerdeno and L.E. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].
  10. [10]
    J.J. Heckman, J. Marsano, N. Saulina, S. Schäfer-Nameki and C. Vafa, Instantons and SUSY breaking in F-theory, arXiv:0808.1286 [SPIRES].
  11. [11]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Gauge mediation in F-theory GUT models, Phys. Rev. D 80 (2009) 046006 [arXiv:0808.1571] [SPIRES].ADSGoogle Scholar
  12. [12]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, An instanton toolbox for F-theory model building, arXiv:0808.2450 [SPIRES].
  13. [13]
    M. Wijnholt, F-theory, GUTs and chiral matter, arXiv:0809.3878 [SPIRES].
  14. [14]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, F-SU(5), arXiv:0811.2807 [SPIRES].
  15. [15]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology, Phys. Rev. D 68 (2003) 075011 [hep-ph/0210256] [SPIRES].ADSGoogle Scholar
  19. [19]
    Work in progress.Google Scholar
  20. [20]
    P. Kumar, Neutrino masses, baryon asymmetry, dark matter and the moduli problem — A complete framework, JHEP 05 (2009) 083 [arXiv:0809.2610] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    E.W. Kolb and M.S. Turner, The early universe, Frontiers in Physics volume 69, Addison Wesley, U.S.A. (1990), pag. 547.MATHGoogle Scholar
  23. [23]
    V. Mukhanov, Physical foundations of cosmology, Cambridge University Press, Cambdirge U.K. (2005), pag. 421.MATHGoogle Scholar
  24. [24]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [SPIRES].ADSGoogle Scholar
  25. [25]
    P. Fayet, Lower limit on the mass of a light gravitino from e + e annihilation experiments, Phys. Lett. B 175 (1986) 471 [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay, Phys. Lett. B 145 (1984) 181 [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [hep-ph/0012052] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [SPIRES].ADSGoogle Scholar
  29. [29]
    J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [SPIRES].ADSGoogle Scholar
  30. [30]
    H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    M. Hashimoto, K.I. Izawa, M. Yamaguchi and T. Yanagida, Axion cosmology with its scalar superpartner, Phys. Lett. B 437 (1998) 44 [hep-ph/9803263] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Ibe and R. Kitano, Gauge mediation in supergravity and gravitino dark matter, Phys. Rev. D 75 (2007) 055003 [hep-ph/0611111] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Kawasaki and K. Nakayama, Solving cosmological problems of supersymmetric axion models in inflationary universe, Phys. Rev. D 77 (2008) 123524 [arXiv:0802.2487] [SPIRES].ADSGoogle Scholar
  34. [34]
    S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge U.K. (1996), pag. 489.Google Scholar
  35. [35]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic Lithium abundances, arXiv:0812.0788 [SPIRES].
  36. [36]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  37. [37]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [SPIRES].ADSGoogle Scholar
  38. [38]
    N. Arkani-Hamed, M. Dine and S.P. Martin, Dynamical supersymmetry breaking in models with a Green-Schwarz mechanism, Phys. Lett. B 431 (1998) 329 [hep-ph/9803432] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    W. Buchmüller, K. Hamaguchi and M. Ratz, Gauge couplings at high temperature and the relic gravitino abundance, Phys. Lett. B 574 (2003) 156 [hep-ph/0307181] [SPIRES].ADSGoogle Scholar
  40. [40]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Dilaton destabilization at high temperature, Nucl. Phys. B 699 (2004) 292 [hep-th/0404168] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    E.J. Chun and A. Lukas, Axino mass in supergravity models, Phys. Lett. B 357 (1995) 43 [hep-ph/9503233] [SPIRES].ADSGoogle Scholar
  42. [42]
    M. Fujii and T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge-mediated supersymmetry-breaking models, Phys. Lett. B 549 (2002) 273 [hep-ph/0208191] [SPIRES].ADSGoogle Scholar
  43. [43]
    M. Fujii, M. Ibe and T. Yanagida, Thermal leptogenesis and gauge mediation, Phys. Rev. D69 (2004) 015006 [hep-th/0309064] [SPIRES].ADSGoogle Scholar
  44. [44]
    M. Taoso, G. Bertone and A. Masiero, Dark matter candidates: a ten-point test, JCAP 03 (2008) 022 [arXiv:0711.4996] [SPIRES].ADSGoogle Scholar
  45. [45]
    M. Ibe and R. Kitano, Sweet spot supersymmetry, JHEP 08 (2007) 016 [arXiv:0705.3686] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  47. [47]
    M.-C. Chen, TASI2006 lectures on leptogenesis, hep-ph/0703087 [SPIRES].
  48. [48]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].ADSGoogle Scholar
  49. [49]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Jonathan J. Heckman
    • 1
  • Alireza Tavanfar
    • 1
  • Cumrun Vafa
    • 1
  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations