Resonances in an external field: the 1+1 dimensional case

  • D. HojaEmail author
  • U.-G. Meißner
  • A. Rusetsky


Using non-relativistic effective field theory in 1+1 dimensions, we generalize Lüscher’s approach for resonances in the presence of an external field. This generalized approach provides a framework to study the infinite-volume limit of the form factor of a resonance determined in lattice simulations.


Lattice Quantum Field Theory Lattice Gauge Field Theories 


  1. [1]
    C.W. Bernard, T. Draper, K. Olynyk and M. Rushton, Lattice QCD Calculation Of Some Baryon Magnetic Moments, Phys. Rev. Lett. 49 (1982) 1076 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    F.X. Lee, R. Kelly, L. Zhou and W. Wilcox, Baryon magnetic moments in the background field method, Phys. Lett. B 627 (2005) 71 [hep-lat/0509067] [SPIRES].ADSGoogle Scholar
  3. [3]
    F.X. Lee, S. Moerschbacher and W. Wilcox, Magnetic moments of vector, axial and tensor mesons in lattice QCD, Phys. Rev. D 78 (2008) 094502 [arXiv:0807.4150] [SPIRES].ADSGoogle Scholar
  4. [4]
    C. Aubin, K. Orginos, V. Pascalutsa and M. Vanderhaeghen, Magnetic Moments of Delta and Omega-Baryons with Dynamical Clover Fermions, Phys. Rev. D 79 (2009) 051502 [arXiv:0811.2440] [SPIRES].ADSGoogle Scholar
  5. [5]
    J.C. Christensen, W. Wilcox, F.X. Lee and L.-m. Zhou, Electric polarizability of neutral hadrons from lattice QCD, Phys. Rev. D 72 (2005) 034503 [hep-lat/0408024] [SPIRES].ADSGoogle Scholar
  6. [6]
    F.X. Lee, L. Zhou, W. Wilcox and J.C. Christensen, Magnetic polarizability of hadrons from lattice QCD in the background field method, Phys. Rev. D 73 (2006) 034503 [hep-lat/0509065] [SPIRES].ADSGoogle Scholar
  7. [7]
    W. Detmold, B.C. Tiburzi and A. Walker-Loud, Extracting Electric Polarizabilities from Lattice QCD, Phys. Rev. D 79 (2009) 094505 [arXiv:0904.1586] [SPIRES].ADSGoogle Scholar
  8. [8]
    W. Detmold, B.C. Tiburzi and A. Walker-Loud, Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields, 1001.1131 [SPIRES].
  9. [9]
    C. Alexandrou, T. Korzec, T. Leontiou, J.W. Negele and A. Tsapalis, Electromagnetic form factors of the Delta baryon, PoS(LATTICE 2007)149 [arXiv:0710.2744] [SPIRES].
  10. [10]
    C. Alexandrou et al., Delta-baryon electromagnetic form factors in lattice QCD, Phys. Rev. D 79 (2009) 014507 [arXiv:0810.3976] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Lüscher, Selected topics in lattice field theory, DESY-88-156, lectures given at Summer School ’Fields, Strings and Critical Phenomena’, Les Houches France, Jun 28 - Aug 5 1988 [SPIRES].
  12. [12]
    U.J. Wiese, Identification of resonance parameters from the finite volume energy spectrum, Nucl. Phys. Proc. Suppl. 9 (1989) 609 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    S.R. Beane, P.F. Bedaque, A. Parreno and M.J. Savage, Exploring hyperons and hypernuclei with lattice QCD, Nucl. Phys. A 747 (2005) 55 [nucl-th/0311027] [SPIRES].ADSGoogle Scholar
  16. [16]
    V. Bernard, M. Lage, U.-G. Meissner and A. Rusetsky, Resonance properties from the finite-volume energy spectrum, JHEP 08 (2008) 024 [arXiv:0806.4495] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M. Lage, U.-G. Meissner and A. Rusetsky, A method to measure the antikaon-nucleon scattering length in lattice QCD, Phys. Lett. B 681 (2009) 439 [arXiv:0905.0069] [SPIRES].ADSGoogle Scholar
  18. [18]
    J. Hu, F.-J. Jiang and B.C. Tiburzi, Current Renormalization in Finite Volume, Phys. Lett. B 653 (2007) 350 [arXiv:0706.3408] [SPIRES].ADSGoogle Scholar
  19. [19]
    B.C. Tiburzi, External Momentum, Volume Effects and the Nucleon Magnetic Moment, Phys. Rev. D 77 (2008) 014510 [arXiv:0710.3577] [SPIRES].ADSGoogle Scholar
  20. [20]
    B.C. Tiburzi, Volume Effects for Pion Two-Point Functions in Constant Electric and Magnetic Fields, Phys. Lett. B 674 (2009) 336 [arXiv:0809.1886] [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, Cusps in K3π decays, Phys. Lett. B 638 (2006) 187 [hep-ph/0604084] [SPIRES].ADSGoogle Scholar
  22. [22]
    J. Gegelia and S. Scherer, How to define physical properties of unstable particles, arXiv:0910.4280 [SPIRES].
  23. [23]
    C.h. Kim, C.T. Sachrajda and S.R. Sharpe, Finite-volume effects for two-hadron states in moving frames, Nucl. Phys. B 727 (2005) 218 [hep-lat/0507006] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    W. Detmold and M.J. Savage, Electroweak matrix elements in the two-nucleon sector from lattice QCD, Nucl. Phys. A 743 (2004) 170 [hep-lat/0403005] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Universität Bonn, Helmholtz-Institut für Strahlen - und Kernphysik (Th) and Bethe Center for Theoretical PhysicsBonnGermany
  2. 2.Forschungszentrum Jülich, Institut für Kernphysik (IKP-3)Jülich Center for Hadron Physics and Institute for Advanced Simulation (IAS-4)JülichGermany

Personalised recommendations