Advertisement

A proposal for B-physics on current lattices

  • ETM collaboration
  • B. Blossier
  • P. DimopoulosEmail author
  • R. Frezzotti
  • G. Herdoiza
  • K. Jansen
  • V. Lubicz
  • G. Martinelli
  • C. Michael
  • G. C. Rossi
  • A. Shindler
  • S. Simula
  • C. Tarantino
  • C. Urbach
Open Access
Article

Abstract

A method to extract B-physics parameters (b-quark mass and f B , \( {f_{{B_s}}} \) decay constants) from currently available lattice data is presented and tested. The approach is based on the idea of constructing appropriate ratios of heavy-light meson masses and decay constants, respectively, possessing a precisely known static limit, and evaluating them at various pairs of heavy quark masses around the charm. Via a smooth interpolation in the heavy quark mass from the easily accessible charm region to the asymptotic point, B-physics parameters are computed with a few percent (statistical + systematic) error using recently produced N f = 2 maximally twisted Wilson fermions data.

Keywords

Lattice QCD Quark Masses and SM Parameters B-Physics Heavy Quark Physics 

References

  1. [1]
    Particle Data Group, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  2. [2]
  3. [3]
  4. [4]
    K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE 2008)010 [arXiv:0810.5634] [SPIRES].
  5. [5]
    A.S. Kronfeld, The weight of the world is quantum chromodynamics, Science 322 (2008) 1198 [SPIRES].CrossRefGoogle Scholar
  6. [6]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B 234 (1990) 511 [SPIRES].ADSGoogle Scholar
  8. [8]
    H. Georgi, An effective field theory for heavy quarks at low-energies, Phys. Lett. B 240 (1990) 447 [SPIRES].ADSGoogle Scholar
  9. [9]
    N. Isgur and M.B. Wise, Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B 232 (1989) 113 [SPIRES].ADSGoogle Scholar
  10. [10]
    N. Isgur and M.B. Wise, Weak transition form-factors between heavy mesons, Phys. Lett. B 237 (1990) 527 [SPIRES].ADSGoogle Scholar
  11. [11]
    G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  12. [12]
    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    ALPHA collaboration, J. Heitger and R. Sommer, Non-perturbative heavy quark effective theory, JHEP 02 (2004) 022 [hep-lat/0310035] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    ALPHA collaboration, J. Heitger et al., Non-perturbative tests of heavy quark effective theory, JHEP 11 (2004) 048 [hep-ph/0407227] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    R. Sommer, Non-perturbative QCD: renormalization, O(a)-improvement and matching to heavy quark effective theory, hep-lat/0611020 [SPIRES].
  16. [16]
    ALPHA collaboration, M. Della Morte et al., Lattice HQET with exponentially improved statistical precision, Phys. Lett. B 581 (2004) 93 [Erratum ibid. B 612 (2005) 313] [hep-lat/0307021] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theory computation of the mass of the bottom quark, JHEP 01 (2007) 007 [hep-ph/0609294] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    M. Della Morte et al., Heavy-strange meson decay constants in the continuum limit of quenched QCD, JHEP 02 (2008) 078 [arXiv:0710.2201] [SPIRES].Google Scholar
  19. [19]
    M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, f B and two scales problems in lattice QCD, Phys. Lett. B 546 (2002) 237 [hep-lat/0206023] [SPIRES].ADSGoogle Scholar
  20. [20]
    G.M. de Divitiis, M. Guagnelli, R. Petronzio, N. Tantalo and F. Palombi, Heavy quark masses in the continuum limit of quenched Lattice QCD, Nucl. Phys. B 675 (2003) 309 [hep-lat/0305018] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    G.M. de Divitiis, M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, Heavy-light decay constants in the continuum limit of lattice QCD, Nucl. Phys. B 672 (2003) 372 [hep-lat/0307005] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    D. Guazzini, R. Sommer and N. Tantalo, Precision for B-meson matrix elements, JHEP 01 (2008) 076 [arXiv:0710.2229] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    A.X. El-Khadra, A.S. Kronfeld and P.B. Mackenzie, Massive fermions in lattice gauge theory, Phys. Rev. D 55 (1997) 3933 [hep-lat/9604004] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Aoki, Y. Kuramashi and S.-i. Tominaga, Relativistic heavy quarks on the lattice, Prog. Theor. Phys. 109 (2003) 383 [hep-lat/0107009] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  25. [25]
    N.H. Christ, M. Li and H.-W. Lin, Relativistic heavy quark effective action, Phys. Rev. D 76 (2007) 074505 [hep-lat/0608006] [SPIRES].ADSGoogle Scholar
  26. [26]
    M.B. Oktay and A.S. Kronfeld, New lattice action for heavy quarks, Phys. Rev. D 78 (2008) 014504 [arXiv:0803.0523] [SPIRES].ADSGoogle Scholar
  27. [27]
    E. Gamiz, Heavy flavour phenomenology from lattice QCD, PoS(LATTICE 2008)014 [arXiv:0811.4146] [SPIRES].
  28. [28]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [SPIRES].ADSGoogle Scholar
  29. [29]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    European Twisted Mass collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from N f = 2 lattice QCD with twisted mass fermions, JHEP 04 (2008) 020 [arXiv:0709.4574] [SPIRES].Google Scholar
  31. [31]
    B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from Nf=2 twisted mass Lattice QCD, JHEP 07 (2009) 043 [arXiv:0904.0954] [SPIRES].Google Scholar
  32. [32]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [SPIRES].Google Scholar
  33. [33]
    ALPHA collaboration, R. Frezzotti, S. Sint and P. Weisz, O(a) improved twisted mass lattice QCD, JHEP 07 (2001) 048 [hep-lat/0104014] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    ALPHA collaboration, M. Della Morte, R. Frezzotti, J. Heitger and S. Sint, Cutoff effects in twisted mass lattice QCD, JHEP 10 (2001) 041 [hep-lat/0108019] [SPIRES].Google Scholar
  35. [35]
    A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    V. Giménez, L. Giusti, G. Martinelli and F. Rapuano, NNLO unquenched calculation of the b quark mass, JHEP 03 (2000) 018 [hep-lat/0002007] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    F. Di Renzo and L. Scorzato, The N f = 2 residual mass in perturbative lattice-HQET for an improved determination of the m b(MSbar)(m b(MSbar)), JHEP 11 (2004) 036 [hep-lat/0408015] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    UKQCD collaboration, C. McNeile, C. Michael and G. Thompson, An unquenched lattice QCD calculation of the mass of the bottom quark, Phys. Lett. B 600 (2004) 77 [hep-lat/0408025] [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Gray et al., The Upsilon spectrum and m b from full lattice QCD, Phys. Rev. D 72 (2005) 094507 [hep-lat/0507013] [SPIRES].ADSGoogle Scholar
  40. [40]
    HPQCD collaboration, A. Gray et al., The B meson decay constant from unquenched lattice QCD, Phys. Rev. Lett. 95 (2005) 212001 [hep-lat/0507015] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    HPQCD collaboration, E. Gamiz, C.T.H. Davies, G.P. Lepage, J. Shigemitsu and M. Wingate, Neutral B meson mixing in unquenched lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [SPIRES].ADSGoogle Scholar
  42. [42]
    C. Bernard et al., B and D meson decay constants, PoS(LATTICE2008)278 [arXiv:0904.1895] [SPIRES].
  43. [43]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α s 4), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [SPIRES].ADSGoogle Scholar
  45. [45]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The 4-loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [SPIRES].ADSGoogle Scholar
  46. [46]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [SPIRES].ADSGoogle Scholar
  48. [48]
    D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z 2 in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order α s 3, Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    K. Melnikov and T.v. Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].ADSGoogle Scholar
  51. [51]
    ETM collaboration, P. Dimopoulos et al., Scaling and low energy constants in lattice QCD with N f = 2 maximally twisted Wilson quarks, PoS(LATTICE 2007)102.
  52. [52]
    ETM collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, arXiv:0911.5061 [SPIRES].
  53. [53]
    ETM collaboration, P. Dimopoulos et al., Scaling and chiral extrapolation of pion mass and decay constant with maximally twisted mass QCD, PoS(LATTICE 2008)103 [arXiv:0810.2873] [SPIRES].
  54. [54]
    ETM collaboration, P. Dimopoulos et al., Light meson physics in the continuum limit N f = 2 Mtm lattice QCD, in preparation.Google Scholar
  55. [55]
    ETM collaboration, B-physics on current lattices: analysis details and physical results from N f = 2 Mtm QCD, in preparation.Google Scholar
  56. [56]
    J. Gasser and H. Leutwyler, Quark masses, Phys. Rept. 87 (1982) 77 [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    ALPHA collaboration, S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Non-perturbative quark mass renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [hep-lat/9810063] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    G. Martinelli and C.T. Sachrajda, On the difficulty of computing higher-twist corrections, Nucl. Phys. B 478 (1996) 660 [hep-ph/9605336] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    ALPHA collaboration, J. Rolf and S. Sint, A precise determination of the charm quark’s mass in quenched QCD, JHEP 12 (2002) 007 [hep-ph/0209255] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theory computation of the mass of the bottom quark, JHEP 01 (2007) 007 [hep-ph/0609294] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    K.G. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [SPIRES].ADSGoogle Scholar
  64. [64]
    K.G. Chetyrkin and A.G. Grozin, Three-loop anomalous dimension of the heavy-light quark current in HQET, Nucl. Phys. B 666 (2003) 289 [hep-ph/0303113] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    ETM collaboration, Quark mass from N f = 2 Mtm lattice QCD, in preparation.Google Scholar
  66. [66]
    CLEO collaboration, J.P. Alexander et al., Measurement of BD s + + ν and the decay constant fD s + from 600/pb −1 of e ± annihilation data near 4170 MeV, Phys. Rev. D 79 (2009) 052001 [arXiv:0901.1216] [SPIRES].ADSGoogle Scholar
  67. [67]
    D. Becirevic et al., Non-perturbatively improved heavy-light mesons: masses and decay constants, Phys. Rev. D 60 (1999) 074501 [hep-lat/9811003] [SPIRES].ADSGoogle Scholar
  68. [68]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. I: o(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    J.L. Goity, Chiral perturbation theory for SU(3) breaking in heavy meson systems, Phys. Rev. D 46 (1992) 3929 [hep-ph/9206230] [SPIRES].ADSGoogle Scholar
  70. [70]
    B. Grinstein, E.E. Jenkins, A.V. Manohar, M.J. Savage and M.B. Wise, Chiral perturbation theory for \( {{{f_{{D_s}}}} \mathord{\left/{\vphantom {{{f_{{D_s}}}} {{f_D}}}} \right.} {{f_D}}} \) and \( {{{B_{{B_s}}}} \mathord{\left/{\vphantom {{{B_{{B_s}}}} {{B_B}}}} \right.} {{B_B}}} \), Nucl. Phys. B 380 (1992) 369 [hep-ph/9204207] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    S.R. Sharpe and Y. Zhang, Quenched chiral perturbation theory for heavy-light mesons, Phys. Rev. D 53 (1996) 5125 [hep-lat/9510037] [SPIRES].ADSGoogle Scholar
  72. [72]
    A. Roessl, Pion kaon scattering near the threshold in chiral SU(2) perturbation theory, Nucl. Phys. B 555 (1999) 507 [hep-ph/9904230] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ETM collaboration
  • B. Blossier
    • 1
  • P. Dimopoulos
    • 2
    • 3
    Email author
  • R. Frezzotti
    • 2
    • 3
  • G. Herdoiza
    • 4
  • K. Jansen
    • 4
  • V. Lubicz
    • 5
    • 6
  • G. Martinelli
    • 7
  • C. Michael
    • 8
  • G. C. Rossi
    • 2
    • 3
  • A. Shindler
    • 8
  • S. Simula
    • 6
  • C. Tarantino
    • 5
    • 6
  • C. Urbach
    • 8
    • 9
  1. 1.Laboratoire de Physique Théorique (Bât. 210)Université de Paris XIOrsay-CedexFrance
  2. 2.Dip. di FisicaUniversità di Roma Tor VergataRomaItaly
  3. 3.INFN, Sezione di Roma Tor VergataRomaItaly
  4. 4.NIC, DESYZeuthenGermany
  5. 5.Dip. di FisicaUniversità di Roma TreRomaItaly
  6. 6.INFN, Sezione di Roma IIIRomaItaly
  7. 7.Dip. di FisicaUniversità di Roma La Sapienza and INFN, Sez. di Roma La SapienzaRomaItaly
  8. 8.Theoretical Physics Division, Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.
  9. 9.Institut für Elementarteilchenphysik, Fachbereich PhysikHumbolt Universität zu BerlinBerlinGermany

Personalised recommendations