Analytic results for massless three-loop form factors

  • R. N. Lee
  • A. V. Smirnov
  • V. A. Smirnov


We evaluate, exactly in d, the master integrals contributing to massless threeloop QCD form factors. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin-Barnes representation, and the PSLQ algorithm. Using our results for the master integrals we obtain analytical expressions for two missing constants in the ϵ-expansion of the two most complicated master integrals and present the form factors in a completely analytic form.


NLO Computations QCD 


  1. [1]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [SPIRES].ADSGoogle Scholar
  3. [3]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [SPIRES].ADSGoogle Scholar
  5. [5]
    G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [SPIRES].ADSGoogle Scholar
  6. [6]
    G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [SPIRES].ADSGoogle Scholar
  7. [7]
    R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A.V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput. Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    C. Bogner and S. Weinzierl, Blowing up Feynman integrals, Nucl. Phys. Proc. Suppl. 183 (2008) 256 [arXiv:0806.4307] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A.V. Smirnov and M.N. Tentyukov, Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, arXiv:0912.0158 [SPIRES].
  19. [19]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [SPIRES].Google Scholar
  24. [24]
    V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006), pag. 283 [SPIRES].Google Scholar
  25. [25]
    H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68 (1999) 351.zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Budker Institute of Nuclear Physics and Novosibirsk State University630090NovosibirskRussia
  2. 2.Scientific Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations