Black hole superradiance from Kerr/CFT

  • Irene Bredberg
  • Thomas Hartman
  • Wei Song
  • Andrew Strominger


The superradiant scattering of a scalar field with frequency and angular momentum (ω, m) by a near-extreme Kerr black hole with mass and spin (M, J) was derived in the seventies by Starobinsky, Churilov, Press and Teukolsky. In this paper we show that for frequencies scaled to the superradiant bound the full functional dependence on (ω, m, M, J) of the scattering amplitudes is precisely reproduced by a dual two-dimensional conformal field theory in which the black hole corresponds to a specific thermal state and the scalar field to a specific operator. This striking agreement corroborates a conjectured Kerr/CFT correspondence.


Black Holes AdS-CFT Correspondence Space-Time Symmetries 


  1. [1]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].ADSGoogle Scholar
  2. [2]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  3. [3]
    H. Lü, J. Mei and C.N. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    T. Azeyanagi, N. Ogawa and S. Terashima, Holographic duals of Kaluza-Klein black holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT duals for extreme black holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D.D.K. Chow, M. Cvetič, H. Lü and C.N. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [SPIRES].ADSGoogle Scholar
  7. [7]
    H. Isono, T.-S. Tai and W.-Y. Wen, Kerr/CFT correspondence and five-dimensional BMPV black holes, Int. J. Mod. Phys. A 24 (2009) 5659 [arXiv:0812.4440] [SPIRES].ADSGoogle Scholar
  8. [8]
    T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT correspondence and string theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    J.-J. Peng and S.-Q. Wu, Extremal kerr black hole/CFT correspondence in the five dimensional Gödel universe, Phys. Lett. B 673 (2009) 216 [arXiv:0901.0311] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    C.-M. Chen and J.E. Wang, Holographic duals of black holes in five-dimensional minimal supergravity, Class. Quant. Grav. 27 (2010) 075004 [arXiv:0901.0538] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    F. Loran and H. Soltanpanahi, 5D extremal rotating black holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A.M. Ghezelbash, Kerr/CFT correspondence in the low energy limit of heterotic string theory, JHEP 08 (2009) 045 [arXiv:0901.1670] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    H. Lü, J.-w. Mei, C.N. Pope and J.F. Vazquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Compere, K. Murata and T. Nishioka, Central charges in extreme black hole/CFT correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    K. Hotta, Holographic RG flow dual to attractor flow in extremal black holes, Phys. Rev. D 79 (2009) 104018 [arXiv:0902.3529] [SPIRES].ADSGoogle Scholar
  16. [16]
    D. Astefanesei and Y.K. Srivastava, CFT duals for attractor horizons, Nucl. Phys. B 822 (2009) 283 [arXiv:0902.4033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A.M. Ghezelbash, Kerr-Bolt spacetimes and Kerr/CFT correspondence, arXiv:0902.4662 [SPIRES].
  18. [18]
    M.R. Garousi and A. Ghodsi, The RN/CFT correspondence, Phys. Lett. B 687 (2010) 79 [arXiv:0902.4387] [SPIRES].ADSGoogle Scholar
  19. [19]
    T. Azeyanagi, G. Compere, N. Ogawa, Y. Tachikawa and S. Terashima, Higher-derivative corrections to the asymptotic Virasoro symmetry of 4D extremal black holes, Prog. Theor. Phys. 122 (2009) 355 [arXiv:0903.4176] [SPIRES].CrossRefADSMATHGoogle Scholar
  20. [20]
    X.-N. Wu and Y. Tian, Extremal isolated horizon/CFT correspondence, Phys. Rev. D 80 (2009) 024014 [arXiv:0904.1554] [SPIRES].ADSGoogle Scholar
  21. [21]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No dynamics in the extremal Kerr throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2D CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    Y. Matsuo, T. Tsukioka and C.-M. Yoo, Another realization of Kerr/CFT correspondence, Nucl. Phys. B 825 (2010) 231 [arXiv:0907.0303] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    G. Compere and S. Detournay, Boundary conditions for spacelike and timelike warped AdS 3 spaces in topologically massive gravity, JHEP 08 (2009) 092 [arXiv:0906.1243] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    M. Guica, T. Hartman, W. Song and A. Strominger, unpublished, October (2008).Google Scholar
  27. [27]
    J.M. Maldacena and A. Strominger, Black hole greybody factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    J.M. Maldacena and A. Strominger, Universal low-energy dynamics for rotating black holes, Phys. Rev. D 56 (1997) 4975 [hep-th/9702015] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].
  31. [31]
    A.A. Starobinsky, Amplification of waves during reflection from a rotating “black hole”, Zh. Exp. Teor. Fiz. 64 (1973) 48 [Sov. Phys. JETP 37 (1973) 28].ADSGoogle Scholar
  32. [32]
    A.A. Starobinsky and S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”, Zh. Exp. Teor. Fiz. 65 (1973) 3 [Sov. Phys. JETP 38 (1973) 1].ADSGoogle Scholar
  33. [33]
    S.A. Teukolsky, Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973) 635 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    W.H. Press and S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J. 185 (1973) 649 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J. 193 (1974) 443 [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.A.H. Futterman, F.A. Handler and R.A. Matzner, Scattering from black holes, Cambridge University Press, Cambridge U.K. (1988) [SPIRES].Google Scholar
  37. [37]
    Ya. B. Zeldovich, Generation of waves by a rotating body, Zh. Exp. Teor. Fiz. Pisma 14 (1971) 270 [JETP Lett. 14 (1971) 180].Google Scholar
  38. [38]
    Ya. B. Zeldovich, Amplification of cylindrical electromagnetic waves from a rotating body, Zh. Exp. Teor. Fiz. 62 (1972) 2076 [Sov. Phys. JETP 35 (1972) 1085].Google Scholar
  39. [39]
    C.W. Misner, Stability of Kerr black holes against scalar perturbations, Bull. Amer. Phys. Soc. 17 (1972) 472.Google Scholar
  40. [40]
    C.W. Misner, Interpretation of gravitational-wave observations, Phys. Rev. Lett. 28 (1972) 994 [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  42. [42]
    Kerrfest proceedings, online at
  43. [43]
    M. Visser, The Kerr spacetime: a brief introduction, in The Kerr spacetime: rotating black holes in general relativity, D.L. Wiltshire, M. Visser and S.M. Scott eds., Cambridge University Press, Cambridge, U.K. (2009), arXiv:0706.0622 [SPIRES].Google Scholar
  44. [44]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    V.P. Frolov and K.S. Thorne, Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole, Phys. Rev. D 39 (1989) 2125 [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    M. Spradlin and A. Strominger, Vacuum states for AdS 2 black holes, JHEP 11 (1999) 021 [hep-th/9904143] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    W.-Y. Wen, Holographic descriptions of (near-)extremal black holes in five dimensional minimal supergravity, arXiv:0903.4030 [SPIRES].
  48. [48]
    E. Berti, V. Cardoso and M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. D 73 (2006) 024013 [Erratum ibid. D 73 (2006) 109902] [gr-qc/0511111] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    M. Casals i Casanellas, Electromagnetic quantum field theory on Kerr-Newman black holes, arXiv:0802.1885 [SPIRES].
  50. [50]
    S.S. Gubser, Can the effective string see higher partial waves?, Phys. Rev. D 56 (1997) 4984 [hep-th/9704195] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Cvetič and F. Larsen, Greybody factors for rotating black holes in four dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    S.S. Gubser, Absorption of photons and fermions by black holes in four dimensions, Phys. Rev. D 56 (1997) 7854 [hep-th/9706100] [SPIRES].ADSGoogle Scholar
  53. [53]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    S.P. Kim and D.N. Page, Schwinger pair production in dS 2 and AdS 2, Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    B. Mashhoon, Stability of charged rotating black holes in the eikonal approximation, Phys. Rev. D 31 (1985) 290.MathSciNetADSGoogle Scholar
  58. [58]
    S. Hod, Near-extreme black holes and the universal relaxation bound, Class. Quant. Grav. 24 (2007) 4235 [arXiv:0705.2306] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  59. [59]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  60. [60]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    J.C. Breckenridge et al., Macroscopic and microscopic entropy of near-extremal spinning black holes, Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: greybody factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [SPIRES].ADSGoogle Scholar
  64. [64]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  65. [65]
    O.J.C. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT correspondence and string theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Irene Bredberg
    • 1
  • Thomas Hartman
    • 1
  • Wei Song
    • 1
    • 2
  • Andrew Strominger
    • 1
  1. 1.Center for the Fundamental Laws of Nature, Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  2. 2.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations