Annihilation decays of bound states at the LHC

Article

Abstract

At the Large Hadron Collider, heavy particles may be produced in pairs close to their kinematic threshold. If these particles have strong enough attractive interactions they may form bound states. Consequently, the bound states may decay through annihilation back into the standard model. Such annihilation decays have the potential to provide much information about the bound particles, such as their mass, spin, or charges, in a manner completely complementary to standard single particle cascade decays. Many of the signatures, such as dijet resonances, will be challenging to find, but may be extremely helpful in unraveling the nature of the new physics. In the standard model, the only novel annihilation decays would be for toponium; these will be hard to see because of the relatively large width of the top quark itself. In models with supersymmetry, marginally visible annihilation decays may occur for example, from bound states of gluinos to dijets or tops. If new particles are bound through forces stronger than QCD, annihilation decays may even be the discovery mode for new physics. This paper presents various theoretical results about bound states and then addresses the practical question of whether any of their annihilation decays can be seen at the LHC.

Keywords

Beyond Standard Model Supersymmetric Standard Model Hadronic Colliders QCD 

References

  1. [1]
    J.T. Goldman and H. Haber, Gluinonium: the hydrogen atom of supersymmetry, Physica 15 D (1985) 181 [SPIRES].ADSGoogle Scholar
  2. [2]
    W.-Y. Keung and A. Khare, Two-gluino bound states, Phys. Rev. D 29 (1984) 2657 [SPIRES].ADSGoogle Scholar
  3. [3]
    J.H. Kuhn and S. Ono, Production and decay of gluino-gluino bound states, Phys. Lett. B 142 (1984) 436 [SPIRES].ADSGoogle Scholar
  4. [4]
    E. Chikovani, V. Kartvelishvili, R. Shanidze and G. Shaw, Bound states of two gluinos at the Tevatron and CERN LHC, Phys. Rev. D 53 (1996) 6653 [hep-ph/9602249] [SPIRES].ADSGoogle Scholar
  5. [5]
    E. Bouhova-Thacker, V. Kartvelishvili and A. Small, Search for gluino gluino bound states, Nucl. Phys. Proc. Suppl. 133 (2004) 122 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    E. Bouhova-Thacker, V. Kartvelishvili and A. Small, Search for gluino-gluino bound states with ATLAS, Nucl. Phys. Proc. Suppl. 152 (2006) 300 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    K. Cheung and W.-Y. Keung, Split supersymmetry, stable gluino and gluinonium, Phys. Rev. D 71 (2005) 015015 [hep-ph/0408335] [SPIRES].ADSGoogle Scholar
  8. [8]
    K. Hagiwara and H. Yokoya, Bound-state effects on gluino-pair production at hadron colliders, JHEP 10 (2009) 049 [arXiv:0909.3204] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluinonia: energy levels, production and decay, Nucl. Phys. B 831 (2010) 285 [arXiv:0910.2612] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Raby and K. Tobe, The phenomenology of SUSY models with a gluino LSP, Nucl. Phys. B 539 (1999) 3 [hep-ph/9807281] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    V.S. Fadin and V.A. Khoze, Production of a pair of heavy quarks in e + e annihilation in the threshold region, Sov. J. Nucl. Phys. 48 (1988) 309 [SPIRES].Google Scholar
  15. [15]
    M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [SPIRES].ADSGoogle Scholar
  16. [16]
    Y. Kiyo, J.H. Kuhn, S. Moch, M. Steinhauser and P. Uwer, Top-quark pair production near threshold at LHC, Eur. Phys. J. C 60 (2009) 375 [arXiv:0812.0919] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    J.H. Kuhn and P.M. Zerwas, The toponium scenario, Phys. Rept. 167 (1988) 321 [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    K. Hagiwara, Y. Sumino and H. Yokoya, Bound-state effects on top quark production at hadron colliders, Phys. Lett. B 666 (2008) 71 [arXiv:0804.1014] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.H. Kuhn and E. Mirkes, Toponium production at hadron colliders, Phys. Lett. B 296 (1992) 425 [SPIRES].ADSGoogle Scholar
  20. [20]
    J.H. Kuhn and E. Mirkes, QCD corrections to toponium production at hadron colliders, Phys. Rev. D 48 (1993) 179 [hep-ph/9301204] [SPIRES].ADSGoogle Scholar
  21. [21]
    N. Fabiano, A. Grau and G. Pancheri, Observability limits for toponium at hadron colliders, Phys. Rev. D 50 (1994) 3173 [SPIRES].ADSGoogle Scholar
  22. [22]
    R.M. Barnett, J.F. Gunion and H.E. Haber, Gluino decay patterns and signatures, Phys. Rev. D 37 (1988) 1892 [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    W. Kilian, T. Plehn, P. Richardson and E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39 (2005) 229 [hep-ph/0408088] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    J.L. Hewett, B. Lillie, M. Masip and T.G. Rizzo, Signatures of long-lived gluinos in split supersymmetry, JHEP 09 (2004) 070 [hep-ph/0408248] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory. Westview Press, U.S.A. (1995), section 5.3.Google Scholar
  27. [27]
    J.H. Kuhn, J. Kaplan and E.G.O. Safiani, Electromagnetic annihilation of e + e into quarkonium states with even charge conjugation, Nucl. Phys. B 157 (1979) 125 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    V.A. Khoze, A.D. Martin and M.G. Ryskin, Prospects for new physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311 [hep-ph/0111078] [SPIRES].ADSGoogle Scholar
  29. [29]
    P.J. Bussey, T.D. Coughlin, J.R. Forshaw and A.D. Pilkington, Central exclusive production of longlived gluinos at the LHC, JHEP 11 (2006) 027 [hep-ph/0607264] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD predictions for decays of P wave quarkonia, Phys. Rev. D 46 (1992) 1914 [hep-lat/9205006] [SPIRES].ADSGoogle Scholar
  31. [31]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [SPIRES].ADSGoogle Scholar
  32. [32]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  33. [33]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
  37. [37]
    G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
  39. [39]
    CMS collaboration, Study of the top-pair invariant mass distribution in the semileptonic muon channel at 10TeV, CMS-PAS-TOP-09-009.Google Scholar
  40. [40]
    CMS collaboration, K. Gumus et al., CMS sensitivity to dijet resonances, CMS-NOTE-2006-070.Google Scholar
  41. [41]
    G.P. Salam, Towards jetography, arXiv:0906.1833 [SPIRES].
  42. [42]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    for the CMS collaboration, G. Giurgiu, Reconstruction of high transverse momentum top quarks at CMS, arXiv:0909.4894 [SPIRES].
  44. [44]
    J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].ADSGoogle Scholar
  46. [46]
    ATLAS collaboration, Top quark properties, ATL-PHYS-PUB-2009-044.Google Scholar
  47. [47]
    S.P. Martin, Diphoton decays of stoponium at the Large Hadron Collider, Phys. Rev. D 77 (2008) 075002 [arXiv:0801.0237] [SPIRES].ADSGoogle Scholar
  48. [48]
    S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [SPIRES].ADSGoogle Scholar
  49. [49]
    M.J. Herrero, A. Mendez and T.G. Rizzo, Production of heavy squarkonium at high-energy pp colliders, Phys. Lett. B 200 (1988) 205 [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Drees and M.M. Nojiri, A new signal for scalar top bound state production, Phys. Rev. Lett. 72 (1994) 2324 [hep-ph/9310209] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    M. Drees and M.M. Nojiri, Production and decay of scalar stoponium bound states, Phys. Rev. D 49 (1994) 4595 [hep-ph/9312213] [SPIRES].ADSGoogle Scholar
  52. [52]
    S.P. Martin and J.E. Younkin, Radiative corrections to stoponium annihilation decays, Phys. Rev. D 80 (2009) 035026 [arXiv:0901.4318] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.E. Younkin and S.P. Martin, QCD corrections to stoponium production at hadron colliders, arXiv:0912.4813 [SPIRES].
  54. [54]
    P. Moxhay and R.W. Robinett, Searching for scalar quarkonium at proton-anti-proton colliders, Phys. Rev. D 32 (1985) 300 [SPIRES].ADSGoogle Scholar
  55. [55]
    D.S. Gorbunov and V.A. Ilyin, Stoponium search at photon linear collider, JHEP 11 (2000) 011 [hep-ph/0004092] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    V.D. Barger et al., Superheavy quarkonium production and decays: a new Higgs signal, Phys. Rev. D 35 (1987) 3366 [Erratum ibid. D 38 (1988) 1632] [SPIRES].ADSGoogle Scholar
  57. [57]
    E. Arik, O. Cakir, S.A. Cetin and S. Sultansoy, Fourth generation pseudoscalar quarkonium production and observability at hadron colliders, Phys. Rev. D 66 (2002) 116006 [hep-ph/0208169] [SPIRES].ADSGoogle Scholar
  58. [58]
    C. Kim and T. Mehen, Color octet scalar bound states at the LHC, Phys. Rev. D 79 (2009) 035011 [arXiv:0812.0307] [SPIRES].ADSGoogle Scholar
  59. [59]
    C.D. Carone, J.M. Conroy, M. Sher and I. Turan, Universal extra dimensions and Kaluza Klein bound states, Phys. Rev. D 69 (2004) 074018 [hep-ph/0312055] [SPIRES].ADSGoogle Scholar
  60. [60]
    N. Fabiano and O. Panella, Threshold production of meta-stable bound states of Kaluza Klein excitations in universal extra dimensions, arXiv:0804.3917 [SPIRES].
  61. [61]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  62. [62]
    J. Kang and M.A. Luty, Macroscopic strings and ’quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    M.J. Strassler and M.E. Peskin, The Heavy top quark threshold: QCD and the Higgs, Phys. Rev. D 43 (1991) 1500 [SPIRES].ADSGoogle Scholar
  64. [64]
    V.S. Fadin and V.A. Khoze, Threshold behavior of heavy top production in e + e collisions, Pis’ma Zh. Eksp. Teor. Fiz. 46 (1987) 417 [JETP Lett. 46 (1987) 525] [SPIRES].Google Scholar
  65. [65]
    V.S. Fadin, V.A. Khoze and N.G. Uraltsev, Large \(B^0-\bar{B}^0\) mixing and physics of the heavy t-quark, presented at Mtg. on Indirect Evidence of New Energy Scales from Low Energy Precision Experiments, June 22-24, Trieste, (1987), available at http://www-lib.kek.jp/cgi-bin/img index?200033095.
  66. [66]
    V.S. Fadin, V.A. Khoze and T. Sjöstrand, On the threshold behavior of heavy top production, Z. Phys. C 48 (1990) 613 [SPIRES].ADSGoogle Scholar
  67. [67]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy-quark hadroproduction cross- section, Nucl. Phys. B 529 (1998) 424 [hep-ph/9801375] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    ATLAS collaboration, E. Cogneras and D. Pallin, Generic tt resonance search with the ATLAS detector, ATL-PHYS-PUB-2006-033.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations